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Abstract. We describe an autonomous driving application for all-wheel-driven automatic guided 
vehicles (AGVs) with four mecanum wheels on the basis of a model-based design (MBD) method. 
The MBD method allows us to focus on control logic design by implementing graphical modeling and 
automatically generating program codes in a short time. Using a robot operating system (ROS) and the 
MBD platform tool Simulink, we can communicate with the ROS network without having to write 
C/C++ codes and verify them, which saves time. Herein, we first describe the hardware construction 
of an AGV, followed by a detailed description of the control architecture of the AGV on the basis of 
ROS and Simulink. We also demonstrate simultaneous localization and mapping and navigation 
technology in autonomous mode. The exhibition demo result of the AGV under an autonomous mode 
using the YOLO v3 object detection algorithm at Tokyo International Robot Exhibition 2019 shows 
the feasibility of the MBD method and the proposed control architecture. 
 

1. Introduction 

As one component of Industry 4.0, autonomous robots have been researched for a multitude of 
scenarios such as self-driving robots, controlling robots in manufacturing lines, home delivery service 
robots, and automatic guided vehicles (AGVs) [1]. However, current controlling methods of AGVs 
still rely on centralized controller systems to dispatch AGVs along predefined fixed paths marked with 
tapes or magnetic markers [2]. With the rapid advancement of the Internet of Things (IoT), traditional 
methods for controlling AGVs are facing a significant challenge, and it is becoming difficult to meet 
the demands of frequent and flexible change guide paths. Thus, a new autonomous driving framework 
for AGVs is required, enabling AGVs to be much more flexible, intelligent, and compatible with IoT 
devices. 

The model-based design (MBD) is a method for designing control systems for embedded systems 
[3,4], especially for the ECU (Engine Control Unit) development in the automobile industry [5]. The 
development process of a control system is focused on the model design using graphical modeling and 
code generation capabilities. Simulink (MathWorks, Inc.) and SCADE (Ansys, Inc.) are two examples 
of MBD platforms. Unlike traditional code handwriting and debugging methods, MBD graphical 
modeling reduces the complexity of the mathematical equation representation of a system, and code 
generation avoids the transcription process to programming languages, which may contain errors that 
are difficult to detect. In this way, the task of designing a control system can be simplified to create a 
graphical model and validating it with appropriate tests and simulations. The remaining processes, 
including code generation, validation, and compilation, are automated using MBD platform software. 
In the development phase, C code handwriting, verification, and testing are time consuming, especially 
as the target system becomes more complex. These steps can be skipped with the Code Generation 
function in the MBD method to save time. For example, using the Simulink Coder Generation toolbox, 
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one can easily generate C code from models designed with Simulink blocks. Additionally, error 
detection, model revise and mathematical equation details are easier to handle from the high-level 
perspective of graphical modeling. According to [6], using the MBD method and code generation, 
Alstom France designed the Propulsion control system, saving 50% development time, and Honeywell 
Aerospace USA designed the Flight control system, saving 60% development time. Thus, Simulink is 
chosen as the MBD platform in this work to build a new AGV control system prototype capable of 
enabling vehicles to move autonomously in a short time. 

Robot operating system (ROS) is free and open-source software under the BSD license. Presently, 
ROS has been widely used by several companies and universities [7], such as Yujin Robots, Clearpath 
Robotics, and JAXA. ROS comprises many open-source robotics libraries for dealing with robotics 
tasks, including sensor driver libraries, simultaneous localization and mapping (SLAM), robot 
navigation, and motion control. The basic method of communication in ROS is through messages held 
by topics based on the TCP/IP layer. Many small programs (called nodes) can be executed concurrently 
and assigned to different machines, enabling one to construct a distributed computation system [8]. 
Thus, we select ROS as the middleware for developing our application. 

This paper is organized as follows. In Section 2.1, we describe the hardware construction of the 
AGV used in this research in detail. In Section 2.2, we describe the autonomous driving control 
framework of the AGV on the basis of ROS and Simulink. In Section 2.3, we discuss available 
autonomous driving technologies to be used for mobile robots such as SLAM and navigation methods. 
In Section 2.4, we show the results of AGV autonomous driving at Tokyo International Robot 
Exhibition 2019 and discuss the obtained results. In Section 2.5, we conclude the knowledge obtained 
through this research and present future research plans. 

2.1 AGV Hardware Construction 
Fig. 1 shows the layout and main components of the AGV developed in this research. The width 

and length are 0.66 and 0.79 m, respectively. We use the all-wheel driven type with mecanum wheels 
as a driving system, which can realize vehicle movement in any direction and rotation at the center of 
the vehicle. The movement part of the AGV consists of four mecanum wheels (OD: 150 mm) units 
and four motors. Each mecanum wheel is driven by one 24 V AC servo motor with an assembled 
gearbox (Reduction Ratio 1:50) independently (FHA-14C-50-E200-CEK. Harmonic Drive Systems 
Inc). Each AC servo motor can achieve Max 15.5 Nm @ Max 120 r/min. Every motor is equipped 
with one 16-bit encoder and is driven by one dependent AC servo driver (HA-680-6-24. Harmonic 
Drive Systems Inc). Four drivers receive commands and send feedback to the four-axis controller 
board (NPMC6045A-4104B), and the controller board communicates with one LF64 MCU board via 
PC/104 bus, as shown in Fig. 1. 

Regarding sensors assembled into the AGV, one stereo camera (Intel Real Sense D435i [9]) is 
installed on the front of the vehicle’s body, which collects RGB images and depth (called point cloud) 
information simultaneously. A six-axis inertial measurement unit sensor is internally equipped with 
Intel Real Sense. Consequently, the measurements of the accelerator and gyroscope for the x, y, and z 
axes are available. Additionally, four ultrasonic sensors are installed in the front of the vehicle. They 
aid in the detection of obstacles when the external light is dim or at a blind corner. Considering physical 
protection for the AGV, two touch sensors are integrated into the vehicle’s front frame to prevent 
collision. 

We use two computers as the brain part of the AGV for this framework: one is Intel NUC7, and 
another is NVIDIA Jetson Xavier. Both are running on Linux 18.04 LTS and ROS Melodic. The 
following are the main functions of Intel NUC7: (1) collection and management of sensor data such as 
RGB-D sensor and ultrasonic sensor data, (2) SLAM, (3) navigation functions (global and local 
planner), (4) sending commands to LF64 MCU board through USB serial communication, (5) sending 
RGB image topics to NVIDIA Jetson Xavier and receiving object detection results, and (6) receiving 
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commands from the joystick in manual mode via Bluetooth. NVIDIA Jetson Xavier [10] currently 
performs only object detection because of its powerful GPU capabilities (512 CUDA cores inside). 

 

 
 

Fig. 1. AGV Layout 

2.2 AGV Driving Control System 
  

 
 

Fig. 2. Framework of AGV Based on ROS 
 

Fig. 2 shows the hardware-based control system of the AGV. Here, NUC7 is used as the hub and 
core part of the entire system, which is also the ROS master. It enables the transfer of vehicle 
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movement commands from a controller in manual mode or a motion planer in autonomous mode 
through USB serial communication. Four ultrasonic sensors are connected to one Arduino Uno board 
and communicate with the ROS master through a USB. Arduino Uno calculates the distance using the 
information collected by each ultrasonic, then packs the results into ROS messages, and sends these 
messages to the ROS master in a topic format. RGB-D sensor data from Intel Realsense, including 
RGB images, point clouds, and infrared ray images, will also be sent to the ROS master. RGD images 
will be transferred from NUC7 (the ROS master) to Xavier for object detection, and point cloud data 
will be transformed into laser scan data for creating 2D maps. In manual mode, a human operator can 
control the vehicle’s movements with a SONY PS4 controller that is connected to NUC7 via Bluetooth. 
In most cases, the human operator is required to monitor statuses, such as the camera’s working status 
and network communication status, for the entire AGV system. In this research, Secure Shell is used 
as the remote control terminal. 

2.2.1 AGV control node by implementing Simulink and Stateflow. 
Simulink is a commercial GUI programming tool developed by MathWorks, Inc., which includes a 

variety of toolboxes, and in each toolbox, there are several high-level blocks such as PID and State 
Estimator. Simulink is widely used as an MBD platform by mobile vehicle manufacturers such as 
Toyota, Honda, and Subaru. In this paper, we use the ROS toolbox in Simulink to communicate with 
the ROS network by subscribing to a sensor and publishing AGV motion control topics. Simulink’s 
modeled blocks’ simplicity, dependability, and convenience allow developers to concentrate on their 
primary tasks. Stateflow is another tool embedded in Simulink used to model reactive systems using 
state machines and flow charts. Especially, when designing complex logic models, Stateflow is much 
easier to build, understand, and debug than traditional code-style programs such as C. In this paper, 
we combine Simulink and Stateflow to construct the AGV autonomous driving control node. Fig. 3 
shows the Simulink model. 

 

 
 

Fig. 3. AGV Control Node Simulink Model 
 

The AGV control Simulink node can be divided into five parts from left to right: 
1) The sensor data receiving part: this is used to receive ROS topic messages such as Joystick and 

ultrasonic sensor signals by subscribing to related ROS topics. 
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2) Decomposition of message data and type conversion: this is used to extract necessary data and 
convert data types for the next process. For example, in the Joystick command, there are more 
than 15 buttons or axes exist; thus, we must extract the ones we want to use. Regarding data 
type conversion, the extracted data are of the float type, but Stateflow handles data as the double 
type in default, so we must convert the data type from float to double using the double block. 

3) Logic Block for the Main AGV Driving Control Block: this was created by Stateflow as the 
core logic part, including AGV body orientation calibration, emergency mode, and recovery 
mode. Section 2.2.2 will provide a more detailed description. 

4) Creation of ROS message: this is used to create ROS messages by combining one empty 
message with geometry_msgs/Twist type and vx, vy, and w. 

5) Packing and publication of AGV control messages: this is used to publish AGV_cmd topic into 
the ROS network with the msg created in 4. 

2.2.2 AGV autonomous driving control logic by implementing Stateflow. 
Simulink and Stateflow are common methods used for implementing the logic control of MBD. 

Simulink is available through relational operator or logic operator. However, Stateflow is more suitable 
for complex logic control since it is equipped with state transition diagrams (STDs), state transition 
tables (STTs), and truth tables. An STD is a type of diagram (as shown in Fig. 4) that comprises state, 
transition, and action, enabling the behavior of systems to be described dynamically. An STT can be 
used to express sequential modal logic (as shown in Table 1 for the logic transition of control modes). 
Instead of drawing a diagram, an STT can be used to express state, transition, and modal logic. Users 
can monitor the current state of a system and visually analyze logic errors. Refer to [11] for detailed 
usage information about Stateflow.  

The video [12] confirms the AGV walking situation captured at Tokyo International Robot 
Exhibition 2019. 

 
Table 1 State transition table for AGV operation mode change 

State Label Item Contents 

Manual 

T01 Transition condition Press Button B 

  

A01 Condition action - 

→ Destination state Automatic 

T02 Transition condition Press Button A 

  

A02 Condition action - 

→ Destination state Emergency 

Emergency 

T03 Transition condition Press Button X 

  

A03 Condition action - 

→ Destination state Manual 

T04 Transition condition Press Button B 

  

A04 Condition action - 

→ Destination state Automatic 

Automatic 

T05 Transition condition Press Button X 

  

A05 Condition action - 

→ Destination state Manual 

T06 Transition condition Press Button A 

  

A06 Condition action - 

→ Destination state Emergency 

 

Fig. 4 shows the state diagram of AGV logic control based on Table 1. In this paper, Manual, 
Emergency, and Automatic are three parent states, which also represent the three control modes, as 
stated in the Introduction section. The default state is the manual mode, which enables a user to control 
the AGV using a joystick. When a user presses buttons A and B separately, the emergency and 
automatic states are switched. In the automatic state, the AGV operates as follows: 
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1) The AGV goes into init state in default. 
2) When the AGV receives an executable command from the YOLO v3 node, it will go into 

MoveForward state after a 3 s temporal logic. 
3) In the MoveForeward state, the AGV will move forward while calibrating its head angle 

using data from both the left and right ultrasonic sensors simultaneously. This function is 
described during the action section. To prevent the AGV from colliding with the wall, a 
state transition condition of ௌభାௌమଶ ൏ൌ 35 [cm] is used. 

4) On the basis of the detected command, the AGV will execute three different actions, 
CCW_90deg, CW_90deg, and CCW_90deg, corresponding to the trump card numbers 1, 
2, and 3 individually. 

5) After executing the rotation command at 4, the AGV’s head may not be perpendicular to 
the wall in the front of it because of external noise such as ground flatness and the 
coefficient of friction. To avoid collision with objects while moving along a planned path, 
the AGV’s head direction will be calibrated in the state Posture_Correction.  

6) When the state Posture_Correction satisfies the transition condition of 𝑎𝑏𝑠ሺ𝑆𝑜𝑛𝑖𝑐ଵ െ𝑆𝑜𝑛𝑖𝑐ଶሻ ൏ 0.07ሾcmሿ, the state returns to init, and the loop continues until the A or B 
buttons are pressed. 

 

 
 

Fig. 4. State Diagram of AGV Logic Control 

2.3 Autonomous Driving Technology 
SLAM, object detection, and path planning are key technologies to realize autonomous driving for 

mobile robots. These technologies are used in this research and are described below in detail. SLAM 
is a branch of mobile robotics that studies how to create a map and localize the robot’s position. The 
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main idea of the SLAM technique is to let a robot move and build a map of its surroundings 
simultaneously when it is placed in an unknown environment. There are several methods of SLAM 
available in ROS, including “gmapping” and RTAB. In this research, we use the gmapping method to 
generate a 2D map, which was developed on the basis of the Rao-Blackwellized particle filter and 
introduced by Murphy and Doucet in detail [13, 14]. 

The ability of a robot to recognize its surroundings is far more important for improving its ability to 
deal with external obstacles such as moving humans and moving vehicles, word comprehension, and 
reading traffic signals. To this end, we use an open-source object detection method called YOLO v3. 
In this paper, we incorporate YOLO v3 into ROS and perform object detection tasks on Xavier via the 
distributed system of ROS. Detailed information regarding YOLO v3 can be obtained in [15]. 

A robot understands only map creation and robot localization, and it has no idea how to get from a 
starting point to a target or how to navigate. In this study, the global planner node designs the necessary 
path for a robot. The global planner is based on the A∗ search algorithm. In most cases, a robot must 
also detect and avoid obstacles, and this can be achieved by the local planner. We use the package 
“move base” to achieve autonomous navigation. The move base package integrates the global planner 
and the local planner on the basis of the dynamic window approach [16]. 

2.4 Test Results and Discussion 
To meet various and flexible requests during the plant and debug phases, we propose three control 

modes: manual, teaching, and autonomous. The manual mode is analogous to a human operator 
operating a vehicle. The human operator holds a controller and a monitor, which are used to capture 
the front scene through or behind the vehicle. In the teaching mode, the AGV moves autonomously 
along a path preprogrammed in the manual mode, which is achieved using the “rosbag” function 
in ROS. For the autonomous mode, after a human operator has set the start and goal points, the vehicle 
automatically plans the shortest path and detects and avoids static or dynamic obstacles. This mode 
integrates several packages such as “GMAPPING,” “MAP SERVER,” “AMCL,” “MOVE BASE,” 
“JOY,” “REALSENSE,” “ROSSERIAL_ARDUINO,” “RVIZ,” and “DARKNET_ROS.” 

Presently, we have realized the vehicle’s movement in the manual and teaching modes. This 
demonstrates that ROS is a useful and convenient operating system to manage sensor drivers, network 
communication, data logging, and visualization. Fig. 5 shows the architecture of nodes and topics of 
the teaching mode. Additionally, test results at the manual and teaching modes are available on [17]. 

For the autonomous mode, object detection has been realized, and SLAM and navigation systems 
are under the debugging phase. The image recognition model is used in this study is trained from 
scratch. The dataset used for training comprises 90 actual images. Five classes must be recognized: 
“go,” “back,” “left,” “right,” and “stop.” After training, we use a new image to test the performance of 
the model. Fig. 6 shows object detection results. Except for the back class whose precision is 74%, the 
precision for others is 100%. Although we achieve 100% precision for these samples, we discover that 
the robustness of the current model is insufficient, as it occasionally misjudges objects such as 
whiteboards. This could be because the number of images in the current dataset, 90, is insufficient for 
training compared with, for example, the well-known MNIST dataset, which comprises 70,000 images 
with 10 classes. 

Regarding object detection, NUC7 sends image topic/image to Xavier via a LAN cable; the 
node/darknet_ros detects the object in the sent topic and publishes the /detection_image detection 
results into ROS for use by other nodes such as control and rviz. According to test results, the time lag 
is 0.5 s and the detection speed is 5.2 fps. We have not yet determined how time lag and detection 
speed affect the AGV control system and safety, and we believe that it is necessary to do so in future 
works. 
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Fig. 5. ROS Node and Topic Architecture in Teaching Mode 
 

 
 

Fig. 6. Objection Detection Result by using Pretrained Model 

3. Conclusions 

In 3 months, we successfully built an autonomous driving framework for an AGV using the MBD 
method on the basis of ROS and Simulink and confirmed that ROS is an efficient integrated operating 
system that can deal with sensor drivers, sensor message transformation, visualization of results, and 
task distribution. The ROS toolbox in Simulink has proven to be user-friendly, simple, and convenient. 

Stateflow, as an embedded logic control tool in Simulink, enables us to perform the following: 1) 
easily construct the AGV control logic using an STD and STT and 2) monitor the current status of the 
system and visually analyze logic errors. 

On the basis of ROS, we controlled and tested the AGV in the manual and teaching modes. The 
Darknet YOLO v3 algorithm was incorporated into ROS and used to realize objection detection via 
the distributed system. Presently, work on AGV self-position prediction using the Kalman filter or 
particle filter; integration of SLAM and navigation node, including automatic path generation and local 
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and global planners; and automatic C/C++ code generation from the Simulink Model are ongoing and 
should be completed soon to realize a higher autonomous mode. 
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