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Abstract. Vibration suppression is an important technology both industrially and environmentally to 

realize a comfort industrial product with a safe structure. In this paper, we carried out numerical 

simulation of damped vibration for a structure having a porous material sandwiched by double walls. 

The cover plate in double walls has a Krylov type acoustic black hole. All edges where the black hole 

exists, have free boundaries. Damping material is laminated on the surface of the black hole. Numerical 

analysis is performed to clarify changes of vibration reduction and vibration transmission from the 

base plate to the cover plate due to the acoustic black hole using FEM and MSKE method proposed 

by Yamaguchi et al. 

 

1. Introduction 

Vibration damping is an important technology from an industrial and environmental perspective to 

realize industrial products with safe and comfort. In automobiles and buildings, double walls with a 

porous layer are sometimes used to decrease vibration and noise. Mironov [1] proposed a vibration 

damping method called acoustic black hole. Furthermore, Krylov [2], [3] et al. have proposed a 

structure with damping material on the surface of the steel plate in the black hole area. And, this 

increases damping effects. In our research, we deal with a model that has an acoustic black hole with 

a damping layer on a cover plate in a double walls structure. There exists a porous layer sandwiched 

by the walls. We modeled this using FEM and numerically analyzed vibration of these structures using 

MSKE method proposed by Yamaguchi et al. [4]. We investigated changes in the vibration reduction 

characteristics and vibration transmission characteristics due to the acoustic black hole. 

Mironov [1] studied vibration propagations of bending waves in a flat plate having an edge where 

the thickness of the plates decreasing to the edge as a quadratic function x2 of the distance x from the 

boundary. Due to the black hole, it is difficult that the bending waves reflect at the edge. Mironov 

called this structure as acoustic black hole. But, to obtain sufficient vibration reduction effects, it is 

necessary that the length of the edge is enough long. At the edge, the thickness is too thin to compensate 

the strength of the structures. To improve this, Krylov proposed to modify the Mironov’s acoustic 

black hole [2], [3] by cutting off the edge practically as finite length. Further, Krylov added a thin 

viscoelastic damping layer on the edge. According to Oberst theory [7], vibration damping effects of 

a straight metal beam covered with a viscoelastic layer are proportional to (thickness of the damping 

layer/ thickness of the metal beam)2. Thus, high efficient damping effects appear when a viscoelastic 

damping layer is covered on the edge in the black hole because of thin thickness around the black holes. 

We introduced this acoustic black hole to the cover plate (Fig.1) in the double walls. And we evaluate 

its effect for vibration reduction. 
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2. Calculation Details 

Figure 1 shows the calculation model with acoustic black hole in the cover plate.  

A porous layer is sandwiched between a steel base plate and a steel cover plate. The thickness of the 

porous material is 11.25[mm] and the thickness of the cover plate is 5.04[mm]. The thickness of the 

base plate is also 5.04[mm]. The side length of the base plate is 280 x 195[mm]. The long side direction 

of the plate is the x-axis, the height direction is the y-axis, and the short side direction is the z-axis. 

The model without acoustic black hole is called as model1 in this paper. 

Next, a structure of the Krylov type acoustic black hole [2], [3] with a length of 45 [mm] is attached 

to one short side of the cover plate of model 1, and a damping material with a thickness of 1 [mm] is 

layered on the top of the acoustic black hole. This is model 2 with acoustic black hole in this paper. 

Here, The reduction function of the thickness h(x) for the part of the black hole is h(x)=εxm (m=2.2). 

This function and the geometry of the cover plate are same as the Krylov’s experiment [3]. The 

boundary conditions are set as the entire peripheries of both the base plate and cover plate are free. In 

addition, the edges of the porous material layer are set as rigid wall, and the particle displacement 

inside the porous material and the displacement of the both plates (base and cover plates) are 

continuous only in the normal direction to the boundary surface. The excitation position is the back 

side of the steel base plate, and is the point shifted 5 mm from the center of the base plate in the z-axis 

direction. This coordinate is (x, y, z) =(162.5, 0, 102.6). The excitation direction is the y-axis direction, 

and the waveform of the excitation is white noise. 

 

 
 

Fig. 1. FEM model including cover plate with acoustic black hole having damping layer 
(model2). 
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3. Numerical Method [4]-[6]  

3.1 Discrete Equations in Porous Layer  

For the internal air in the porous layer, we use a finite element model as shown in this section. 

Considering periodic oscillation and infinitesimal amplitude, the equations of motion can be written 

for inviscid compressive perfect fluid as follows. 

 

−grad 𝑝 = −𝜌𝑒𝜔2{𝑢𝑓}                                (1) 

 

The continuity equation is shown as:  

 

    𝑝 = −𝐸𝑒div{𝑢𝑓}                                 (2) 

 

{𝑢𝑓} is the particle displacements vector. p denotes sound pressure.  represents the effective 

density of the internal air. E represents the modulus of volume elasticity of the internal air.   is the 

angular frequency. Here, the particle displacements {𝑢𝑓}  are chosen as unknowns [4]-[6] by 

eliminating the sound pressure p in equations. (1) and (2). The displacement is chosen as the common 

unknown variable for the double walls structure with acoustic black hole. 

 We approximate the relation between {𝑢𝑓} and particle displacement vectors {𝑢𝑓𝑒} at nodal 

points in the element as  

                                                                                                          

{𝑢𝑓} = [𝑁𝑓]
𝑇

{𝑢𝑓𝑒}                                 (3) 

 

Where, [𝑁𝑓]
𝑇
 represents a matrix comprised of proper shape functions. 

From equations (1), (2) and (3), the strain energy, kinetic energy, and external work can be 

determined. After applying the Minimum Energy Principle, the following equations are obtained. 

 

  ([𝐾]𝑓𝑒 − 𝜔2[𝑀]𝑓𝑒){𝑢𝑓𝑒} = {𝑓𝑓𝑒}                          (4) 

 

[𝐾]𝑓𝑒 = 𝐸𝑒[𝐾̃]
𝑓𝑒

                                (5) 

 

[𝑀]𝑓𝑒 = 𝜌𝑒[𝑀̃]
𝑓𝑒

                                (6) 

 

𝐸𝑒  and 𝜌𝑒  show the volume elasticity and the effective density in the domain of the elements, 

respectively.  [𝐾]𝑓𝑒  and  [𝑀]𝑓𝑒 show the element stiffness matrix and the element mass matrix, 

respectively. [𝐾̃]
𝑓𝑒

, [𝑀̃]
𝑓𝑒

 show the matrix including the shape functions and their derivatives. {𝑓𝑓𝑒} 

is the nodal force vector. 

We utilize the following model having the complex effective density 𝜌𝑒
∗  and complex volume 

elasticity 𝐸𝑒
∗, for damped sound fields inside porous materials [8], [4]-[6]: 

 

𝜌𝑒 ⇒ 𝜌𝑒
∗ = 𝜌𝑒𝑅 + 𝒋𝜌𝑒𝐼                               (7) 

 

   𝐸𝑒 ⇒ 𝐸𝑒
∗ = 𝐸𝑒𝑅 + 𝒋𝐸𝑒𝐼                               (8) 
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Where, 𝒋 is the imaginary unit. 𝜌𝑒𝑅 and  𝜌𝑒𝐼 are the real and imaginary parts of 𝜌𝑒
∗, respectively. 

𝐸𝑒𝑅 and 𝐸𝑒𝐼 show the real and imaginary parts of 𝐸𝑒
∗, respectively. We verified that this model is 

suitable for fibrous materials in cars [4]-[6]. We assumed the elastic waves through the resin fiber of 

the porous materials can be neglected. 
Element mass matrix [𝑀]𝑓𝑒 can be written by substituting equation (7) into equation (6). 

 

[𝑀]𝑓𝑒 = [𝑀𝑅]𝑓𝑒(1 + 𝒋𝜒𝑓𝑒)                             (9) 

 

𝜒𝑓𝑒 = 𝜌𝑒𝐼/𝜌𝑒𝑅                                    (10) 

 
[𝑀𝑅]𝑓𝑒 is the real part of the element mass matrix [𝑀]𝑓𝑒. 𝜌𝑒𝐼 is the imaginary part of the effective 

density. 𝜒𝑓𝑒 = 𝜌𝑒𝐼/𝜌𝑒𝑅 shows the damping effect originated from flow resistance. 

Substituting Eqn.(8) into Eqn.(5), the following element stiffness matrix [𝐾]𝑓𝑒is given. 

 
[𝐾]𝑓𝑒 = [𝐾𝑅]𝑓𝑒(1 + 𝒋𝜂𝑓𝑒)                                (11) 

 

      𝜂𝑓𝑒 = 𝐸𝑒𝐼/𝐸𝑒𝑅                                          (12) 

 

In equation (11), [𝐾𝑅]𝑓𝑒 shows the real part of the element stiffness matrix [𝐾]𝑓𝑒. In equation 

(12), 𝜂𝑓𝑒 shows the damping effect due to hysteresis between pressure and volume strain in the 

porous materials. 
Both the element mass matrix [𝑀𝑅]𝑓𝑒 and the element stiffness matrix [𝐾]𝑓𝑒 for internal gas in 

the porous materials have complex quantities.  

The complex effective density is 𝜌𝑒𝑅  = 1.40kg/m3, 𝜒𝑓𝑒  = -0.500. And the complex volume 

elasticity is 𝐸𝑒𝑅 = 1.19105 N/m2, 𝜂𝑓𝑒 = 0.100. For the porous layer in the double-walled structures, 

the isoparametric hexagonal elements [9] are used. 

3.2 Equation for Vibration of Solid Bodies with Damping in the Double Walls 

We used discretized equations shown in the following equations from equations (13) to (15) for 

vibration of the base plate and the cover plate with the acoustic black hole. For the viscoelastic layer 

on the acoustic black hole, we use the same model. These models are considered as conventional linear 

finite element model with hysteresis damping. 
{𝑢𝑠} shows the displacement vector for the solid bodies. Using the matrix comprised of shape 

functions[𝑁𝑠]𝑇, the relation between the displacements {𝑢𝑠𝑒} at nodal points and the displacement 

vector {𝑢𝑠} in an element for the solid bodies are approximated as: 

 

{𝒖𝒔} = [𝑵𝒔]𝑻{𝒖𝒔𝒆}                                 (13) 

 

Strain energy, kinetic energy, and external work are determined, and then, by applying the agrange 

equation, the following expressions are given. 

 

([𝐾]𝑠𝑒 − 𝜔2[𝑀]𝑠𝑒){𝑢𝑠𝑒} = {𝑓𝑠𝑒}                            (14) 

 
[𝐾]𝑠𝑒 = [𝐾𝑅]𝑠𝑒(1 + 𝒋𝜂𝑠𝑒)                             (15) 

 
[𝐾]𝑠𝑒  and [𝑀]𝑠𝑒  represent the element stiffness matrix and element mass matrix, respectively. 

{𝑓𝑠𝑒} shows the nodal force vector in an element e  for the solid bodies. The element stiffness matrix 
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[𝐾𝑅]𝑠𝑒  in equation (15) has complex quantities in equation (14). [𝐾𝑅]𝑠𝑒  
shows the real part of 

element stiffness matrix for the solid bodies. 𝜂𝑠𝑒  shows the material loss factor corresponding to each 

element e.  

For the viscoelastic materials and the elastic materials, the isoparametric hexahedral elements [9] 

are mainly used with the non-conforming modes. For the viscoelastic damping material, the storage 

modulus of elasticity is 1.6109 N/m2, the mass density is 1.9103 kg/m3 and the material loss factor 

𝜂𝑠𝑒 is 0.5. 

3.3 Discrete Equations for the Global System for the Double Walls with Acoustic Black Hole 

All elements for the porous layer and the base plate and the cover plate in the double walls having 

the acoustic black hole are superposed by using equations from (4) to (15). At boundaries between the 

porous layer and the solid bodies (i.e. the cover plate and the base plate), normal components of the 

displacements to the boundaries are continuous. Tangential components of the displacements along 

the boundaries are independent. From these conditions, the following equation is given. 
 

([𝐾]𝑎 − 𝜔2[𝑀]𝑎){𝑢𝑎} = {𝑓𝑎}                             (16) 
 

Where, {𝑓𝑎} shows the nodal force vector and }{ au  shows the nodal displacement vector. {𝑢𝑎} 

is comprised of {𝑢𝑓𝑒} and {𝑢𝑠𝑒}. [𝐾]𝑎  contains [𝐾]𝑓𝑒  and [𝐾]𝑠𝑒 , while [𝑀]𝑎  includes [𝑀]𝑓𝑒 

and [𝑀]𝑠𝑒. 

3.4 Expressions for Modal Damping by Using MSKE Method [4]-[6] 

By ignoring the external force vector from equation (16), we can obtain the following complex 

eigenvalue problem: 
 

∑ ([𝐾𝑅]𝑒(1 + 𝒋𝜂𝑒) − (𝜔(𝑖))
2

(1 + 𝒋𝜂tot
(𝑖)

)[𝑀𝑅]𝑒(1 + 𝒋𝜒𝑒)){𝜙(𝑖)∗
}

𝑒max
𝑒=1 = {0}  (17) 

 

Where, superscript (i) represents the i-th eigenmode. (𝜔(𝑖))
2

 shows the real part of complex 

eigenvalue. {𝜙(𝑖)∗
}  shows the complex eigenvector and 𝜂tot

(𝑛)
 represents the modal loss factor. [𝐾𝑅]𝑒 

shows the real part of element stiffness matrix. [𝑀𝑅]𝑒 denotes the real part of element stiffness matrix. 

Next, the following parameters 𝛽𝑠𝑒 and 𝛽𝑘𝑒 are introduced: 
 

  𝛽𝑠𝑒 =
|𝜂𝑒|

𝜂max
，𝛽𝑠𝑒 ≦ 1, 𝛽𝑘𝑒 =

|𝜒𝑒|

𝜂max
，𝛽𝑘𝑒 ≦ 1                     (18) 

 

𝜂max shows the maximum value among the elements' material loss factors 𝜂𝑒  and 𝜒𝑒 , (e=1,2, 

3, ..., 𝑒max). Under assumption of  𝜂max ≪ 1, solutions of equation (17) can be expanded using a 

small parameter 𝜇 = 𝒋𝜂max: 

 

 {𝜙(𝑖)∗
} = {𝜙(𝑖)}

0
+ 𝜇{𝜙(𝑖)}

1
+ 𝜇2{𝜙(𝑖)}

2
+ ⋯ ⋯                     (19) 

 

 (𝜔(𝑖))
2

= (𝜔0
(𝑖))2 + 𝜇2(𝜔2

(𝑖))2 + 𝜇4(𝜔4
(𝑖))2 + ⋯ ⋯                 (20) 

 

𝒋𝜂tot
(𝑖) = 𝜇𝜂1

(𝑖) + 𝜇3𝜂3
(𝑖) + 𝜇5𝜂5

(𝑖) + ⋯ ⋯                    (21) 
 

In the equations, under conditions of 𝛽𝑠𝑒 ≦ 1, 𝛽𝑘𝑒 ≦ 1 and 𝜂max ≪ 1, we can get 𝜂max𝛽𝑠𝑒 ≪ 1 

and 𝜂max𝛽𝑘𝑒 ≪ 1. Therefore, 𝜇𝛽𝑠𝑒 and 𝜇𝛽𝑘𝑒 can be considered as small parameter like 𝜇. In these 
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equations, {𝜙(𝑖)}
0
，{𝜙(𝑖)}

1
，{𝜙(𝑖)}

2
，... and (𝜔0

(𝑖))2，(𝜔2
(𝑖))2，(𝜔4

(𝑖))2,...and 𝜂1
(𝑖)，𝜂3

(𝑖)，𝜂5
(𝑖), ... 

have real quantities.  

By substituting these equations from equations (19) to (21) into equation (17), the following 

equation can be obtained:  
 

𝜂tot
(𝑖) = 𝜂𝑠𝑒

(𝑖) − 𝜂𝑘𝑒
(𝑖)                             (22) 

             

𝜂𝑠𝑒
(𝑖) = ∑ (𝜂𝑒𝑆𝑠𝑒

(𝑖))

𝑒𝑚𝑎𝑥

𝑒=1

 , 𝑆𝑠𝑒
(𝑖) = {𝜙(𝑖)}

0

𝑇
[𝐾𝑅]𝑒{𝜙(𝑖)}

0
/ ∑ {𝜙(𝑖)}

0

𝑇
[𝐾𝑅]𝑒{𝜙(𝑖)}

0

𝑒max

𝑒=1

 

 

𝜂𝑘𝑒
(𝑖) = ∑ (𝜒𝑒𝑆𝑘𝑒

(𝑖))

𝑒𝑚𝑎𝑥

𝑒=1

, 𝑆𝑘𝑒
(𝑖) = {𝜙(𝑖)}

0

𝑇
[𝑀𝑅]𝑒{𝜙(𝑖)}

0
/ ∑ {𝜙(𝑖)}

0

𝑇
[𝑀𝑅]𝑒{𝜙(𝑖)}

0

𝑒max

𝑒=1

 

 

For the expressions, modal loss factor 𝜂tot
(𝑖) can be computed using 𝜂𝑠𝑒

(𝑖) and 𝜂𝑘𝑒
(𝑖). 𝜂𝑠𝑒

(𝑖) can 

be determined using share 𝑆𝑠𝑒
(𝑖)of strain energy of each element to total strain energy and material 

loss factors 𝜂𝑒 of each element e . 𝜂𝑘𝑒
(𝑖) can be determined using share 𝑆𝑘𝑒

(𝑖)of kinetic energy of 

each element to total kinetic energy and material loss factors 𝜒𝑒 of each element e  

While the material loss factors 𝜂𝑒 are related with hysteresis damping in the relation between stress 

and strain, the material loss factors 𝜒𝑒 are related with flow resistance. The eigenmodes {𝜙(𝑖)}
0
 in 

equation (22) has real quantity. Thus, the eigenmodes can be calculated by solving real eigenvalue 

problem, which corresponds to the equation by deleting damping parameters in equation (17). We 

named the equation (22) as Modal Strain and Kinetic Energy Method (MSKE method) [4]-[6]. This 

method corresponds to the extended version of Modal Strain Energy Method (MSE method) for 

structures having elastic bodies with viscoelastic bodies. 

3.5 Computation of Vibration Responses Using MSKE Method [4]-[6] 

Under input force, acceleration {𝐴𝑜𝑢𝑡} as vibration responses in the structures are calculated using 

the modal parameters and modal damping from MSKE method in Sec.3.4 as follows. 

  

{𝐴𝑜𝑢𝑡} = ∑
−𝜔2{𝜙𝑖𝑛

(𝑖)
}

𝑡
{𝐹𝑖𝑛}{𝜙𝑜𝑢𝑡

(𝑖)
}

𝑚(𝑖)[(𝜔(𝑖))
2

−𝜔2+𝒋(𝜔(𝑖))
2

𝜂𝑠𝑒
(𝑖)

−𝒋𝜔2𝜂𝑘𝑒
(𝑖)

]

𝑚𝑎𝑥
𝑖=1           (23) 

 

{𝐹𝑖𝑛}  is the external force vector at the excitation points, {𝜙𝑖𝑛
(𝑖)

}  is the i-th eigenmode at the 

excitation points, {𝜙𝑜𝑢𝑡
(𝑖)

} is the i-th eigenmode at the observation points, 𝑚(𝑖) is the i-th modal mass. 

4. Analysis Results and Considerations 

The average acceleration levels of the entire surface of the base and cover plates are clarified into 

1/3 octave bands to evaluate the vibration reduction.  

4.1 Average Acceleration Level of Base Plate 

Figure 2 represents vibration acceleration levels |Abase|av of the base plate in the double walls with / 

without the acoustic black hole. This value |Abase|av is averaged over all nodes in the base plate. In Fig.2, 

0dB means 1m/sec.2/N. From Fig.2, it can be seen that model 1 (no acoustic black hole) has the same 

amplitude level as model 2 (acoustic black hole with damping material layer) after the 500Hz band. 
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Since both models have the same flat base plates with no acoustic black hole, it is thought that they 

are not affected by attenuation by the acoustic black hole in the cover plate. 

 

 
 

Fig. 2. Acceleration level of base plate. 

4.2 Average Acceleration Level of Cover Plate 

Figure 3 shows vibration acceleration levels |Acover|av of the cover plate in the double walls with / 

without the acoustic black hole. This value |Acover|av is averaged over all nodes in the cover plate. In 

Fig.3, 0dB means 1m/sec.2/N, too.                                                    

 

 
 

Fig. 3. Acceleration level of cover plate. 
 

From Fig.3, it can be seen that |Acover|av of model 2 (acoustic black hole, with damping material) is 

smaller than |Acover|av of model 1 (no acoustic black hole) in the 315 Hz, 400 Hz bands and after 800 

Hz band. 
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4.3 Evaluation of Vibration Transmission Properties for the Double Walls Including Acoustic 

Black Hole 

Figure 4 shows vibration transmission |Abase to cover|av from the base plate and the cover plate. In Fig.4, 

positive value in |Abase to cover|av means magnification of vibration propagation, while negative value 

means that we can get vibration isolation. We can observe large effects for the isolation in the higher 

frequency region than 800Hz band due to the presence of the acoustic black hole in the cover plate. 

 

 
 

Fig. 4. Vibration transmission level from base plate to cover plate (Effects of acoustic black 
hole in the cover plate). 

4.4 Eigenmodes of Structures with Acoustic Black Hole 

Deformation distributions of the structure with acoustic black hole were visualized as eigenmodes 

using FEM. 

Figure 5 shows typical examples of eigenmodes having dominant large deformations in the area 

where the acoustic black hole exists. As can be seen, these modes can have large modal loss factors. 

On the other hand, Figure 6 represents typical examples of eigenmodes having relatively small non-

dominant deformations in the area where there is acoustic black hole. As can be seen, these modes 

tend to have small modal loss factors. 

From these results, it can be seen that damping effects become larger, when the deformations in the 

area of acoustic black hole becomes larger. 

 

           
  

(a) Eigenmode under                        (b) Eigenmode under 
 f [Hz]=1790, η tot [-]= 0.0482                  f [Hz]=4590 , η tot [-]= 0.327 

 
Fig. 5. Typical examples of eigenmodes (Dominant large deformations in acoustic black hole: 
high damping). 
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(a) Eigenmode under                    (b) Eigenmode under 

 f [Hz]=310, η tot [-]= 0.00161              f [Hz]=748 , η tot [-]= 0.00257 

 
Fig. 6. Typical examples of eigenmodes (Relatively small deformations in acoustic black hole: 
low damping). 

5. Conclusion 

 Double walls having an acoustic black hole with a damping material layer on the cover plate was 

numerically analyzed using FEM and MSKE method, and the vibration reduction characteristics and 

vibration transmission characteristics were clarified. All edges around both the base plate and cover 

plate, were free. A porous layer was sandwiched between the plates. The base plate in the double walls 

was excited at a point. 

For the cover plate, the average acceleration level became smaller after the middle frequency band, 

when there exists acoustic black hole in the cover plate. Damping effects due to the black hole appears 

when vibrations were transmitted from the base plate to the acoustic black hole through the cover plate. 

For the base plate, there was no difference in the average acceleration level between the models 

with/without the black hole in the mid-frequency range and beyond. This is due to the absence of the 

acoustic black hole. 

It is found that damping effects become larger, when the deformations in the area of acoustic black 

hole in the cover plate becomes larger. 
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