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Abstract. Urban mass transit network need to be planned and evaluated. “Network quality” is one of 

the main mass transit qualities, in addition to operational quality. Connectivity and accessibility 

qualities are two important aspects of a “network quality”. This kind of analysis requires the whole 

point-to-point shortest-path data. A special matrix method has ever been developed for the 

simultaneous calculation of all the shortest-paths, for which a mathematical proof must be developed. 

To be mathematically correct, the calculation method must satisfy the following algorithm 

requirements : all itinerary combinations must be evaluated, each minimum result must be recorded, 

an appropriate fathoming procedure must exist, and the absolute minimum value must be produced 

automatically at the end of the calculation. The study proved that the min-plus algebra is capable of 

ensuring those procedures and always providing the correct answer. Thus, the min-plus algebra is 

considered as mathematically correct for network shortest-path simultaneous calculation. 

1. Introduction 

Big cities in Indonesia are considered as late in providing urban public mass transport. Therefore, 

a good mass transport network planning and evaluation are important. The first step to develop an 

urban mass transit is the development of a master plan, followed by the development of a 

step-by-step mass transit line. The “network quality” accessment is easily considered as capital. A 

“network quality” analysis requires considerably amount of network calculation. One of the essential 

data needed involves all node-to-node shortest path lengths [1-6].  

Several methods have been developed for calculating the shortest-path. In operations research and 

discrete mathematics, the shortest-path can be calculated using the Dijkstra algorithm up to the Floyd 

algorithm for simultaneous calculation, by passing, among others, through the Kruskal-Wallis 

algorithm [7-10]. However, all these are still based on a list of link’s data. Moreover, the method is 

available in the graph theory [11]. In geography of transportation, an attempt was made to develop a 

method based on a special matrix calculation method; however, its capability is still limited and the 

matrix calculation is still not so practical [1]. All these methods are based on link data list; its 

practicality can still be improved. 

Spreadsheet is a very powerfull and yet very versatile software for executing calculations. The 

most known and used spreadsheet is the Microsoft Excel, which is very excellent for tabular 

calculations, and of course any type of matrix calculations.  

Sophisticated softwares for transportation modelling can be found easily; however these are not 

always easily accesible for financial reasons [12,13]. Operations research softwares are the same, but 

are not specially developed for transportation cases [7-9].  

Hence, why do we not develop a special network calculation method designated to be easily used 

on a spreadsheet software and also to be easily written in programming language ?. Fortunately, a 

special matrix technique (SMT) for transportation network analyse (TNA) has been developed. This 

is specially intended, designed and developed to be easily used for spreadsheet software [3-6,14-16]. 

The classic matrix theory can not be used for this purpose [6,15,17]. 
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One of the major matrix calculation technic is the min-plus algebra for all shortest-paths 

simultaneous calculation [6,14]. The min-plus algebra is a development of the max-plus algebra, 

which was first developed by INRIA in France to solve the discrete event system problems. Later, 

tentatives to use the max-plus algebra for transportation problem has ever been made [18-21]. After 

its initiation, the min-plus algebra has been used instead and always gave the correct result [6,14-16]. 

However, the proof of mathematical correctness is still not yet well developed and written. 

This paper present the result of the mathematical proof of the correctness of the min-plus algebra 

for the all network’s shortest-paths simultaneous calculation. 

2. Special Matrix Technique for Transportation Network Analysis 

2.1 SMT for TNA 

The SMT for TNA was first developed for the sparse road network analysis. Later, it was 

developed and tested to be used for other types of TNA. The technique consists of : network case 

statements, network models, matrix form convention, and matrix calculation methods; the min-plus 

algebra is also its constituent [6,14-16]. 

2.2 Network Model 

For the purpose of mathematical proof, a case of a road network was taken. The network model is 

a simple link-node model [6,14,16], in which the node can represent an intersection, or a region’s 

important point, while the link represents a road segment. Fig. 1 illustrates a network model. 

 

Fig. 1. Road network model 

2.3 Matrix Representation of the Network 

The matrix representation of a network is organized as follows : basic matrix, expanded matrix, 

and indicative matrix. A network is always represented as an n×n special matrix. The diagonal cells 

are used to represent node data, while link data must be represented in non diagonal cells [6,14,15]. 

Table 1 presents two samples of a network matrices.  
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Table 1. m.N and m.L matrices 

 

 

 

 

 

 

 

2.4 Min-plus Algebra 

The min-plus algebra is a slight development of the max-plus algebra, in which the “max 

operation” is changed into the “min operation”. The general operations and notations in the min-plus 

algebra are presented as follows [6,14]. 

a  b = min (a, b)         (1) 

a  b = a + b         (2) 

|A|  |B| = |C|          (3) 

 |C| =   k=1-n aik  bkj              (4) 

cij  =  ai1  b1j  ai2  b2j  ai3  b3j  ......  ain  bnj        (5) 

   =  min ((ai1 + b1j), (ai2 + b2j), (ai3 + b3j), ....., (ain + bnj))   (6) 

|A|N =  |A|  |A|(N-1)        (7) 

|A|0  =  1         (8) 

2.5 Shortest Path Formula in SMT for TNA 

By referring to the SMT convention, the shortest-paths simultaneous calculation formulae is 

written as follows, by using the min-plus algebra principal [6,14]. 

m.SP = m.LL(N-1)         (9) 

The power of (N-1) is utilized, because for a network with N nodes, for each pair of nodes; the 

maximum number of nodes can be passed without passing a node more than once, in traversing the 

network from node o (origin) to node d (destination), is N. Therefore, (N-1) is the maximum number 

of links that can be passed or the maximum number of steps [6,14]. 

3. Correctness Proof 

3.1 Proof Method Development 

Regarding the operations research, the shortest path calculation is an integer case optimization 

method. Several related algorithms have been developed, such as : enumeration of total combinations 

for shortest path calculation, general branch-and-bound technics for integer optimization and ordered 

combinations with a reduced searching area for general integer case [7-9,22,23]. All these algorithms 

deal with : the champ of investigation (the whole possible combination down to feasible solution 

champ), combination process and fathoming rule [7-9,22,23]. 

The mathematical proof is to verify whether the min-plus algebra calculation procedure satisfies 

the algorithm requirements. 

The shortest path problem is an optimization case, in which a mixture of enumeration procedures 

and branch-and-bound technic used. Hence, the algorithm requirements to be fulfilled are as 

follows : all itinerary combinations must be evaluated, each minimum result must be recorded, 

m.L 1 2 3 4 5

1 0 1 0 1 0

2 1 0 1 1 0

3 0 1 0 0 1

4 1 1 0 0 0

5 0 0 1 0 0

m.N 1 2 3 4 5

1 1 0 0 0 0

2 0 3 0 0 0

3 0 0 1 0 0

4 0 0 0 1 0

5 0 0 0 0 1
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correct and appropriate fathoming technic must be used, each absolute minimum must be 

automatically presented as a calculation result. 

3.2 Correctness Proof 

The proof must be produced by evaluating whether, the min-plus algebra for shortest-paths 

simultanous calculation satisfies the aforementioned algorithm requirement. 

General Case. To be easily understandable, a general network case, consisting of 5 nodes and 8 

links, is used to present the mathematical proof. The network and its link length matrices are 

presented in Figure 2 and Table 2. The value 0 in the table indicates the distance between node i to 

node i, all these can be found in the diagonal matrix cells. The value of 999 represents infinitive 

value, indicating that node i to node j is not connected directly. 

 
Fig. 2. General network case 

 

Table 2. Link length matrix 

m.LL 1 2 3 4 5

1 0 6 3 12 999

2 6 0 2 999 2

3 3 2 0 8 7

4 12 999 8 0 2

5 999 2 7 2 0  
 

Shortest Path Calculation. The most important, pertinent and interesting part of the min-plus 

algebra matrix powering is the operation of matrix multiplication, which incorporate the following 

formulae : 

lln+1
ij = min {(lln

i1+lln
1j),(ll

n
i2+lln

2j),(ll
n
i3+lln

3j) .... (ll
n

in+lln
nj)}    (10) 

where : 

  lln
ij  :  the shortest path length from node i to j, for the nth powering step 
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This operation ensures that all itinerary combinations are evaluated to obtain the itinerary 

combination with the minimum length. The operation is performed stepwise sequentially, according 

to the matrix powering step. 

The min-plus algebra calculation, performed using a spread sheet, is presented in Figure 3 and 

Table 3. The figure 3 illustrates the entire itinerary combinations evaluation range. 

 

Fig. 3. Illustration of min-plus algebra power procedure 

 

Table 3. Min-plus algebra calculation table 

m.LL1 1 2 3 4 5 m.LL1 1 2 3 4 5

1 0 6 3 12 999 1 0 6 3 12 999

2 6 0 2 999 2 2 6 0 2 999 2

3 3 2 0 8 7 3 3 2 0 8 7

4 12 999 8 0 2 4 12 999 8 0 2

5 999 2 7 2 0 5 999 2 7 2 0

m.LL2 1 2 3 4 5

1 0 5 3 11 8

2 5 0 2 4 2

3 3 2 0 8 4

4 11 4 8 0 2

5 8 2 4 2 0

m.LL3 1 2 3 4 5

1 0 5 3 10 7

2 5 0 2 4 2

3 3 2 0 6 4

4 10 4 6 0 2

5 7 2 4 2 0

m.LL4 1 2 3 4 5

1 0 5 3 9 7

2 5 0 2 4 2

3 3 2 0 6 4

4 9 4 6 0 2

5 7 2 4 2 0

m.LL5 1 2 3 4 5

1 0 5 3 9 7

2 5 0 2 4 2

3 3 2 0 6 4

4 9 4 6 0 2

5 7 2 4 2 0  
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Calculation Detail and Connotation. For easy understanding, calculation detail and connotation 

explications are presented for the calculation of the shortest-path length from node 1 to 4 : m.SP14. 

The discussion are detailed for calculations of Steps 0-4. For each step the results are expressed by 

m.LL14
1 to m.LL14

5. 

Step 0. Step 0 represents power 1, m.LL1, indicating that one step itinerary must be derived 

for all pairs of origins and destinations. 

m.LL14
1 = m.LL14 

  = ll14 

         = 12 

Step 1. Step 1 represents power 2, m.LL2, implying that a two steps itinerary must be derived 

for all pairs of origins and destinations. The calculation for the shortest-path itinerary from node 1 to 

4 is presented as follows.  

m.LL14
2 = m.LL14  m.LL14 

         = min {(ll11 + ll14), (ll12 + ll24), (ll13 + ll34), (ll14+ll44), (ll15 + ll54)} 

         = min {(0 + 12),(6+999),(3+8),(12+0),(999+2)} 

          = 11 

All itineraries are tested as follows : 

    ll11 – ll14 : real path : 1-1-4, path length = 0 + 12 = 12. 

    ll12 – ll24 : real path : 1-2-4, path length = 6 + 999 = 999. 

    ll13 – ll34 : real path : 1-3-4, path length = 3 + 8 = 11.  

    ll14 – ll44 : real path : 1-4-4, path length = 12 + 0 = 12. 

    ll15 – ll54 : real path : 1-5-4, path length = 999 + 2 = 999. 

Step 2. Step 2 represents power 3, m.LL3, indicating that a three-steps itinerary must be 

derived for all pairs of origins and destinations. The calculation for the shortest-path itinerary from 

Node 1 to 4 is presented as follows.  

m.LL14
3 = m.LL2

14  m.LL14 

         = min {(ll2
11 + ll14), (ll

2
12 + ll24), (ll

2
13 + ll34), (ll

2
14+ll44), (ll215 + ll54)} 

          = min {(0 + 12),(5+999),(3+8),(11+0),(8+2)} 

         = 10 

Optimum itinerary : 

    ll15 – ll54 : path3 : 1-5-4, path length = 8 + 2 = 10. 

              path215 : 1-2-5 

             real path : 1-2-5-4 

Step 3. Step 3 represents power 4, m.LL4, indicating that a four-steps itinerary must be 

derived for all pairs of origins and destinations. The calculation for the shortest-path itinerary from 

Node 1 to 4 is presented as follows.  

m.LL14
4 = m.LL3

11  m.LL14 

         = min {(ll3
11 + ll14), (ll

3
12 + ll24), (ll

3
13 + ll34), (ll

3
14+ll44), (ll315 + ll54)} 

         = min {(0 +12),(5+999),(3+8),(10+0),(7+2)} 

          = 9 

Optimum itinerary : 

    ll15 – ll54 : path4 : 1-5-4, path length = 7 + 2 = 9. 

                path315 : 1-2-5 

path2 12 : 1-3-2 

              real path : 1-3-2-5-4 
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Step 4. Step 4 represents power 5, m.LL5, implying that a five steps itinerary is derived for all 

pairs of origins and destinations. The calculation for the shortest-path itinerary from Node 1 to 4 is 

presented as follows.  

m.LL14
5 = m.LL4

14  m.LL14 

         = min {(ll4
11 + ll14), (ll

4
12 + ll24), (ll

4
13 + ll34), (ll4

14+ll44), (ll4
15 + ll54)} 

          = min {(0 + 12),(5+999),(3+8),(9+0),(7+2)} 

          = 9 

Optimum itinerary : 

    ll14 – ll44 : path5 : 1-4-4, path length = 9 + 0 = 9. 

       real path4 14 : 1-3-2-5-4 

   real path : 1-3-2-5-4-4 

    ll15 – ll54 : path5 : 1-5-4, path length = 7 + 2 = 9. 

       real path4 15 : 1-3-2-5-5 

     real path : 1-3-2-5-5-4 

Calculation Notes. Principal characteristics of min-plus algebra matrix power calculation can be 

drawn and presented as follows : 

 In terms of network, each step of the powering process, implies the addition of 

one-step-forward in the shortest path itinerary searching and is calculated in terms of path 

length. 

 For each one-step-forwards (each one-step-powerings), the minimum path length is always 

calculated and used, among the all existing combinations. 

 The minimum value and optimum itinerary can then be different for every step. 

 Once the minimum absolute is obtained, the value remains the same throughout the next 

powering. 

 After all the cells are already filled with the minimum absolute value, each matrix cell values 

remains the same throughout the next powering (m.LL5 = m.LL4). 

 The total absolute minimum can be achieved at power (N-1) or earlier. 

3.3 Satisfaction of Algorithm Requirements 

The entire min-plus algebra power operation principal, that is matrix to matrix multiplication 

mechanism, for simultaneous shortest-path length calculation, was shown to satisfy all the algorithm 

requirements stated earlier. 

 All possible itinerary combinations are verified. 

 Only minimum result is recorded for each cell in each step.  

 The fathoming procedure is realized by always taking the minimum value of each step’s 

combination, thus incorporating the fact that the optimum itinerary for a cell can be different 

across different steps. 

 After obtaining the absolute minimum values, they always remains the same even though the 

powering process continues. 

 The absolute minimum is obtained automatically at the calculation end. 
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4. Conclusions 

The study’s objective was successfully achieved. The main conclusion points, of the min-plus 

algebra matrix powering, are presented as follows. 

 It can be used for the simultaneous calculation of the shortest-path length and is considered 

mathematically correct. 

 It can be very easily performed on spreadsheet type software and can be easily programmed 

through a programming language. 

 It is not capable of indicating the shortest path itineraries directly. 

Further researches should be conducted to develop a matrix calculation method to automatically 

record the shortest path itineraries and investigate the possibilities of using the min-plus algebra for 

urban mass transit schedule synchronization. 
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