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Abstract. Experimental results are presented on chaotic vibrations of a shallow clamped arch 

subjected to periodic lateral acceleration. The arch is compressed by an initial axial displacement, 

then the lowest mode of vibration of the arch has asymmetric form to the mid span. The arch shows 

characteristics of soften-and- hardening spring involving snap-through transition. Chaotic responses 

including dynamic snap-through transition and internal resonances are inspected with the maximum 

Lyapunov exponents, the Fourier spectra and the Poincaré maps. Mode contributions to the chaos are 

examined with the principal component analysis. It is found among other conclusions that: In the 

chaotic response with the dynamic snap-through generated from the nonlinear periodic resonance of 

the lowest mode with the asymmetric form, the vibration mode with the symmetric form has 

dominant contribution to the chaos. 

  

1. Introduction 

Thin walled structures are utilized in many vehicles. Arches and beams are fundamental elements 

of such structures. Since an arch has a curved configuration, the bending stiffness of the arch is much 

larger than that of a beam. Increasing the curvature of the arch and the axial compressive 

displacement to the arch, the stiffness also increases. However, when the arch is subjected to lateral 

load which exceeds a critical magnitude, the arch loses its stability by snap- through buckling. 

Asymmetric deformation is induced in a deep arch. Further, when the arch is excited by a periodic 

force, then a large amplitude vibration is generated by resonance. In typical regions of the excitation 

frequency, chaotic responses are abruptly generated. It is expected that multiple modes of vibration 

are involved in the chaotic response. Since nonlinear response of the arch has strong coupling with 

the axial compressive displacement, the generation of the chaos is affected drastically by the 

curvature and the axial displacement. 

Nonlinear vibrations and chaotic phenomena of arches and beams were studied by many 

researchers including the authors [1-8]. The authors have investigated the nonlinear vibrations of an 

arch [9,10] and chaotic vibrations of a post-buckled beam [11-15] both experimentally and 

analytically. The predominant chaotic responses were generated from the sub-harmonic resonance 

responses. Further, authors conducted the experiment of a post-buckled reinforced beam [16], the 

experiment of a post-buckled cantilevered beam connected by a string to an axial spring [17] and 

analysis of a post-buckled L-shaped beam [18]. 
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To reveal the chaotic phenomena of an arch compressed in an axial direction, experimental results 

are presented of the chaotic vibrations of the arch under periodic acceleration. A thin arch is clamped 

at both ends and is compressed by the initial axial displacement. The arch is deformed to large 

curvature. Under the periodic lateral acceleration, the chaotic responses of the arch are inspected 

with the frequency response curves, the maximum Lyapunov exponents, the Fourier spectra and the 

Poincaré projections. Furthermore, detecting chaotic responses simultaneously at multiple positions 

of the arch, mode contribution to the chaos is analyzed with the principal component analysis. 

2. Test Arch 

Fig. 1 shows the test arch fixed on a base frame. A phoshor-bronze arch with thickness h=0.32 

mm, breadth b=30 mm and length 280 mm is clamped at the both ends by two rigid blocks on the 

base frame. The surface of the rigid block is cut to a circular surface. The arch has the effective 

length L=180 mm and the mean radius R=1.1×104 mm. The arch is painted with acrylic resin of 

white color. The white surface of the arch is used as a reflection-target of a laser displacement sensor. 

Material properties are obtained as the Young's modulus E=102 GPa and the mean mass density 

ρ=8.9×103 kg/m3. Controlling thermal elongations of the arch and the base frame, the initial axial 

displacement is applied to the arch. Consequently, the arch has larger curvature than that of the mean 

radius R. As shown in the figure, the coordinate system is denoted by x-axis along the arc of the 

radius R and z-axis in the radial direction. The lateral deflection of the arch is denoted by W(x,t). 

 

 

 
 

Fig. 1. Test arch 

3. Vibration Test And Procedure 

To summarize the results of the experiments, the following non-dimensional notations are 

introduced. 

 

x = x / L, w = W / h, a = L2 / Rr, [ps, pd ]= [g, ad ](raL4 / EIr) , qs = QsL
3 / EIr, 

t = W0t, [wi, w] = [ fi, f ](2p /W0 )        (1) 

r = I / A, W0 = L-2 EI / rA         (2) 
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Where, r represents the radius of gyration of cross section of the arch, Ω0 is the coefficient 

corresponded to lateral vibration of the arch. In Eq. (1), ξ is the non-dimensional coordinate, w is the 

deflection normalized by the thickness h of the arch. Notation α is the non-dimensional mean 

curvature of the arch. Notations ps and pd are the non-dimensional force intensities related to the 

gravitational acceleration g and the periodic peak acceleration ad, respectively. Notations ω and τ are 

the non-dimensional excitation frequency and the time, respectively. Non-dimensional excitation 

force is expressed as ps + pd cos ωτ. When the restoring force of the arch is examined, static 

deflection under concentrated force Qs is measured. Notation qs is the non-dimensional concentrated 

force. 

The arch has the mean curvature α = 32 ± 2. To obtain precise results of chaotic responses of the 

arch, axial thermal elongation of the arch was kept constant during the vibration test. The arch is 

subjected to the static force ps =1.2×103 due to the gravity. The arch is examined under the amplitude 

of excitation pd =1.48×103.  

To find the fundamental characteristics of the arch, first, configuration of initial deflection due to 

the axial displacement and the gravity force on the arch is measured. Next, applying periodic 

acoustical pressure on the arch, linear natural frequencies are detected with the spectrum analyzer. 

Finally, the characteristics of the restoring force are examined. 

A schematic diagram of the vibration test setup is shown in Fig. 2. In the test setup, the devices 

are divided into three sections of excitation, measurement and data analysis. First, the arch is excited 

by periodic acceleration with an electromagnetic exciter through the base frame. Next, dynamic time 

responses of the arch are detected with non-contact laser displacement sensors. Finally, chaotic 

responses are investigated as following procedure: to find frequency regions where chaotic responses 

are excited, the nonlinear frequency response curve is inspected. Time progresses of non-periodic 

responses are examined with the Fourier spectra, the Poincaré projections, the maximum Lyapunov 

exponents and the principal component analysis. The maximum Lyapunov exponent of the 

non-periodic response is calculated using the procedure by Wolf et al. [19] and Takens [20]. 

Increasing the embedding dimension e, the maximum Lyapunov exponent λmax is evaluated. If the 

λmax has a positive value, the response is confirmed as the chaos. Recording responses at multiple 

positions of the arch simultaneously, the principal component analysis [21,22] is applied. 

Contribution ratios of principal components and corresponded modal patterns in the chaotic vibration 

are discussed. 

4. Results and Discussion 

4.1 Fundamental Characteristics of the Arch 

Fig. 3 shows the static initial deflection of the arch measured from the circular arc of the 

non-dimensional curvature α=32. The maximum raise of the arc from the line which connects the 

arch ends is 1.2 times of the arch thickness. The maximum initial deflection is found w = -2.3 at 

the mid span of the arch, then the arch has large curvature. The initial deflection is caused by the 

effects of the initial axial displacement and the gravity force. The axial displacement is so small that  
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Fig. 2. Vibration test set up 
 
 

 
Fig. 3. Configuration of initial deflection of the arch 

 
 

it is difficult to measure directly. Thus, the axial displacement is identified indirectly by comparing 

the fundamental properties with that of the corresponding analysis. The fundamental properties 

correspond to the static initial deflection, linear natural frequencies and nonlinear restoring force. 

The initial axial displacement of this arch is estimated as the order of 10 μm by the results of 

experiment [10] and the theory [9]. 

Table 1 shows the linear natural frequencies ωi and the corresponded modes of vibration. In the 

table, the lowest mode of vibration has the asymmetric configuration. The asymmetric form has two 

half-waves along the arch. This asymmetric form in the vibration is due to the large curvature of the 

arch. The second mode of vibration shows the symmetric form which is superimposed with the 

configurations of one half-wave and of three half-waves. Since the modes of vibration of second 

order and of third order have the relation ω2/2≈ω3/3, the condition of internal resonance is satisfied. 

Fig. 4 shows the static lateral deflection w of the arch measured at ξ=0.31 under the concentrated 

force qs loaded at the mid span of the arch. In the figure, the characteristics of nonlinear restoring 

force show the type of soften-and-hardening spring including snap-through transition. When the 

force increases from the stable equilibrium position of the arch, the arch deflects inward with the 

type of the softening spring. As the deflection is close to w=0.25, the snap-through buckling appears.  

Table 1. Linear natural frequencies and vibration modes of the arch 
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Fig. 4. Static deflection of the arch under concentrated load 

 

Then, the arch transits to the larger deflection w =4.3. As the deflection increases more than w =4.3, 

the restoring force shows the hardening type of nonlinearity. Without the concentrated force, this 

arch has two stable equilibrium positions. 

4.2 Frequency Response Curves of the Arch 

Nonlinear response curves of the arch are recorded under the periodic excitation force pdcosωτ.  

The results are shown in Fig. 5. Varying the excitation frequency ω, the dynamic response of the 

arch at the point ξ=0.31 is recorded by the root mean square value wrms. Notation (i, j) denotes the 

steady-state periodic response of resonance, in which i is a generated mode of vibration, while j 

indicates a type of resonance. For example, j =1 indicates the principal resonance, while j =1/2 is the 

sub-harmonic resonance of 1/2 order. A chaotic response is represented by the notation C(i, j), in 

which (i, j) corresponds to the dominant mode of vibration and the type of resonance. 

Since the arch has the characteristics of the soften-and-hardening spring, as the excitation 

frequency is decreased, resonant responses are generated easily from the non-resonant responses. 

When the excitation frequency ω approaches to ω3 from upper region, the non-resonant steady-state 

response transits to the other non-resonant response of wrms=4.3. The response involves the static 

large deflection. At the frequency ω=84.4, the chaotic response C(1,1/2) is generated together with  
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Fig. 5. Frequency response curves of the arch 

 

the dynamic snap-through transition from the sub-harmonic resonance (1,1/2). The vibration mode  

(1,1/2) has the asymmetric form. At the frequency ω=46.5 in the principal resonance of the lowest 

mode of vibration, chaotic resonance C(1,1) is also generated with the dynamic snap-through. The 

chaotic response shows non-periodic amplitude variation. At the frequency ω=44.0, the chaotic 

response jumps to the non-resonant response. In the lower frequency region of the super-harmonic   

resonance of (2,2), at the frequency ω=37.0, the chaotic response of the type of internal resonance 

C(2,2:3,3) appears. The internal resonance satisfies the condition ω2/2≈ω3/3. Furthermore, at ω=35.6, 

the chaotic response of C(2,2) is excited with the dynamic snap-through. When the excitation 

frequency is increased continuously from lower frequency region, the chaotic response with the 

internal resonance C(2,2:3,3) and the chaotic responses with the dynamic snap-through C(1,1) and 

C(1,1/2) are also generated again. 

4.3 Inspection of Chaotic Responses of the Arch 

Based on the time progresses of the non-periodic response at ξ=0.31 of the arch, the maximum 

Lyapunov exponent is calculated by the Wolf's method. Fig. 6 shows the maximum Lyapunov 

exponents λmax related to the embedding dimension e of the chaos of C(2,2:3,3), C(1,1) and C(1,1/2). 

In the figure, the maximum Lyapunov exponent of the chaos C(2,2:3,3) takes the value within 

λmax=1.0 and λmax=1.3 as the embedding dimension exceeds e=6. For the chaotic responses of C(1,1) 

and C(1,1/2), the maximum Lyapunov exponents range from λmax=4.8 to λmax=5.6, near the 

embedding dimensions exceed e=8 or e=9. Since the maximum Lyapunov exponents of these 

responses take the positive values, these responses are confirmed as the chaos. The maximum 

Lyapunov exponent and the corresponded embedding dimensions of the chaos C(2,2:3,3) with the 

internal resonance take smaller values than those of the chaotic responses C(1,1) and C(1,1/2). Half 

of the embedding dimension corresponds to the number of predominant vibration modes that 

contribute to the chaotic response ([3]Pezeshki and Dowell (1989)). 

Chaotic responses are discussed by the time progress, the Poincaré projection and the Fourier 

spectrum. Fig. 7 indicates the results of the chaos of the internal resonance C(2,2:3,3) at the  
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Fig. 6. Maximum Lyapunov exponent related to embedding dimension 

 
 

frequency ω=38.2. In Fig.7-(a), the time progress of the non-dimensional deflection w is presented 

by the number of excitation period τe. The chaotic response vibrates in small amplitudes. Center of 

peak amplitudes of the response shifts to the positive direction from the origin. The positive direction 

implies the inward direction of the arch from the static equilibrium point. Consequently, the arch will 

be compressed axially during the vibration. Fig. 7-(b) shows the Poincaré projection. In the phase 

space of the deflection w and the velocity w,ωτ, 6000 points are plotted on the phase delay θ=π/3 from 

the peak amplitude of the periodic acceleration. The projections within the deflection w=0.1 and 

w=0.3 shows the condensed figure, while in the range from w=0.4 to w=0.7, the projections are 

focused in band- like strips. The Fourier spectrum of the response is shown in Fig.7-(c). The abscissa 

represents the non-dimensional Fourier frequency ωsp, while the ordinate stands for the frequency 

spectra A which is scaled by decibel. Dominant spike of spectrum appears at ωsp=76.5 which is twice 

of the excitation frequency. The response corresponds to the super-harmonic resonance of order two 

with the second mode of vibration. Furthermore, the peak spike at ωsp=116 corresponds to the 

super-harmonic resonance of order three related to the third mode. Consequently, the chaotic 

response is cooperated with the internal resonance which satisfies the relation ω2/2≈ω3/3. 

Fig. 8 shows the chaotic response C(1,1) with the dynamic snap-through. In Fig. 8-(a), the large 

amplitude time response shows non-periodic behavior. Further, the response transits irregularly 

around the two stable equilibrium points. In Fig. 8-(b), the Poincaré projections of this response 

prevails uniformly over the range from w=-0.5 to w=6. Condensed dotted figure can be observed 

around w=0. From the Fourier spectrum in Fig. 8-(c), predominant peak indicates the response of 

principal resonance with the lowest mode of vibration. Broad band spectrum is observed compared 

with the chaotic response with the type of internal resonance in Fig. 7-(c). 

Fig. 9 shows the chaotic response C(1,1/2) with the dynamic snap-through. Compared with the 

results of C(1,1), the chaotic response also transits between the two stable equilibrium points 

randomly. However, the chaotic response involves the sub- harmonic response with amplitude 

modulation around the equilibrium point of the large deflection w=4.3. Further, the response around 

the deflection w=0 shows complicated non-periodic vibration. In the Fourier spectrums shown in  
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Fig. 7. Chaotic response of the type of C(2,2:3,3), ω=38.2. 

 
Fig. 9-(b), peak spectrum ωsp=39.9 indicate the predominant component of the sub-harmonic 

resonance of order 1/2 with the first mode of vibration. 

4.4 Contributions of Vibration Modes to the Chaos of the Arch 

The principal component analysis (Loeve (1955)) enables one to estimate a contribution ratio of 

vibration modes in the chaotic response of the arch. The chaotic time progresses of deflection are 

measured simultaneously at five positions along the arch. Measuring positions are ξ=0.08, 0.31, 0.5, 

0.69 and 0.92. Applying the analysis to the multiple time data of the chaotic responses, contribution 

ratio and related modal pattern are calculated. The modal pattern for the chaos C(2,2:3,3) with the 

internal resonance is shown in Fig.10. The modal patterns φi related to the principal component are 

illustrated in the order of eigenvalue i. Contribution ratio is also listed in the figure. The internal 

resonance is cooperated with the second and third modes of vibration which are symmetric to the 

mid span of the arch. The largest contribution in the principal components prevails 68%. Its modal 

pattern corresponds to the second mode of vibration with the symmetric form. The contribution ratio 

of the third mode to the chaotic response is 2.9%. However, the contribution ratio of the first mode of 
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Fig. 8. Chaotic response of the type of C(1,1), ω=47.5. 

 

vibration with the asymmetric form takes 29%. Consequently, for the chaotic response with the 
internal resonance C(2,2:3,3), the lowest mode of vibration with the asymmetric form have 

significant contributions to the chaos as well as the second and third modes with the symmetric form. 

Fig. 11 shows the result of the chaotic response C(1,1) in the principal resonance of the lowest 

mode having the asymmetric form. The most significant modal pattern is the second mode of 

vibration with the symmetric form which has contribution ratio of 87%. The response is generated 

involving the dynamic snap-through. The contribution of the modal pattern with the lowest mode of 

the asymmetric form has 12%, while the higher modes contribute less than 2%. 

When the chaotic response C(1,1/2) with the dynamic snap-through is generated from the sub- 

harmonic resonance of the lowest mode with the asymmetric form, the contribution of the second 

mode with the symmetric form increases to 94%, while that of the lowest mode is 5.5%, because the 

principal resonance of the second mode with the symmetric form is close to the chaotic response. 
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Fig. 9. Chaotic response of the type of C(1,1/2), ω=83.0. 

 

 
Fig. 10. Modal pattern in the chaotic response of the arch obtained  

by the principal component analysis, ω=38.2, C(2,2:3,3). 
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Fig. 11. Modal pattern in the chaotic response of the arch obtained by the principal 

component analysis, ω=47.5,  C(1,1). 
 
 

5. Conclusion 

The precise experiments have been carried out on the chaotic vibrations of a clamped arch 

constrained by the initial axial displacement. The main results are summarized as follows: 

(1) Dominant chaotic responses of the arch are generated from the frequency regions of the 

nonlinear periodic resonances. In the typical frequency region of the internal resonance, the 

chaotic response is generated in relatively small amplitude. In the regions of the 

sub-harmonic resonance of 1/2 order and the principal resonance corresponded to the lowest 

mode of vibration, large amplitude chaotic responses appears involving the dynamic 

snap-through. 

(2) The maximum Lyapunov exponents of the chaos with internal resonance has the smaller 

value λmax=1.2 than the value λmax=5 of the chaos with the dynamic snap-through. The 

Poincaré projection of the chaos with the internal resonance shows band- like strips, while 

that of the chaos with dynamic snap-through indicates distributed figure. 

(3) In the chaotic response of the internal resonance cooperated with the second and third modes 

of vibration with the symmetric forms, the lowest mode of vibration with the asymmetric 

form contributes one-third of the total modes of vibration. When the chaotic response in the 

type of the dynamic snap-through is generated from the nonlinear periodic resonance, which 

has the lowest mode with the asymmetric form, the second mode of vibration with the 

symmetric form has dominant contribution to the chaos. 
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