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Abstract. We created a test piece that simulates the upper back of a car. We measured the change in 
sound insulation from the sound-source side to the cabin side with breathable trim (urethane foam or 
felt). We created a finite-element model to calculate the acoustic-damping properties. Using urethane 
foam and felt to model the complex effective density and bulk modulus of the internal air, we sought 
the loss factor from the decay contribution of each sound-absorbing element employed in modal 
damping of the space. An experiment was conducted to verify this analysis, and it was found to be of 
sufficient accuracy, meaning that the sound-absorbing-material-thickness-dependent damping in an 
actual car could be accurately calculated by this technique. 

1. Introduction 

  Recently, it has been thought important to design cars with comfortable interiors, and this goal can 

be facilitated by using lightweight soundproof materials to dampen noise. Although interior materials, 

such as the trim on the upper back and doors, have conventionally been made of resins such as 

impermeable polypropylene, more permeable materials such as hard felt, urethane foam, and the like 

are beginning to be employed more widely. Although these materials have been evaluated in terms of 

weight (i.e., whether they are lightweight compared with resin), intensity, and rigidity, their sound 

absorption and insulation properties are not fully understood. Conventional research employs the 

sound-property-prediction technique (the transfer-matrix method [1,2]), which assumes an infinite 

plate. However, the complicated nature of this calculation results inadequate accuracy.  

In this study, the complex density and bulk modulus of urethane foam and felt were identified from 

the propagation constant and characteristic impedance obtained by the improved two-cavity method 

[3] using the impedance tub. The permeable trim is judged in the car’s cabin, which is divided from 

the trunk by a porous object. A test piece imitating the upper back of a car is created, its acoustic 

properties are analyzed by measurement and the finite-element method. 

2. Analytical Method 

2.1 Discrete Equation for Sonic Fields Contained in Sound-Absorbing Materials 

We discretize sonic fields contained in sound-absorbing materials using a finite-element method. In 
this study, the Helmholtz equation, which is suitable for a homogeneous sound field, is not used, 
because gas and the sound-absorbing materials are mixed in a complicated manner. Thus, we adopt the 
following approach. Under the assumption of infinitesimal amplitude, the equations of motion of an 
inviscid compressive perfect fluid undergoing periodic oscillation can be expressed as follows: [4,5] 
 

}{grad 2 Up                                     (1) 

The continuity equation is written as  

}div{UEp                                      (2) 
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where p   is the sound pressure, }{U   is the particle-displacement vector,    is the angular 

frequency, and E   and    are the bulk modulus of elasticity and the effective density of air, 

respectively.  

By introducing shape functions TN ][  , the relationship between p   in an element and sound-

pressure vector }{ ep  at the nodal points can be approximated as 

 

}{][ e

T pNp                                        (3) 

 

where ],,[][ ,...321 NNNN T   and T denotes the transpose.  

Next, the kinetic energy, strain energy, and external work are derived from Eqs. (1)-(3). The 

following expressions are then obtained by applying the minimum-energy principle. 
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where 
e  and 

eE  are the effective density and bulk modulus of elasticity for gas in an element, 

respectively, }{ eu  is the nodal-particle-displacement vector, eM ]
~

[  is the matrix containing the shape 

functions, eK ]
~

[  is the matrix containing their derivatives, and 
eijM

~
and 

eijK
~

 are components of 

eM ]
~

[  and eK ]
~

[ , respectively. These components can be expressed as follows: 
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e
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                                        (7) 

 
e

jijieij yNyNxNxNK )/)(/()/)(/{(
~

dxdydzzNzN ji )}/)(/(   (8) 

 

where i is the component of the ith row, and j represents the component of the jth column. In this paper, 

we refer to eK ][  as the stiffness-element matrix and eM ][  as the mass-element matrix.  

A model employing complex effective density 
*

e  and complex propagation speed 
*

ec  is used to 

analyze the sonic fields inside sound-absorbing materials [4,5]. In this paper, we use the following 

model with complex effective density 
*

e  and complex bulk modulus of elasticity 2***
)( eee cE   

for the elements in the sound-absorbing materials [4,5]: 
 

 
eIeRee j  *                               (9) 

eIeRee jEEEE  *                              (10) 

 

Here, j  is an imaginary unit and 
eRE  and 

eIE  are the real and imaginary parts of *

eE , respectively. 

eIE   is related to the hysteresis between sound pressure p   and volume strain, }div{U  . 
eR   and 

eI  are the real and imaginary parts of *

e , respectively. 
eI  is related to the flow resistance, R . We 

have verified the effectiveness of this model in our previous study. 

The mass-element matrix 
eK ][  is obtained by substituting Eq. (9) into Eq. (5), 

 

)1(][][ eeRe jKK                               (11) 

where 

eeIeReReR KK ]
~

))[/((][ 22   , eReIe  /                  (12) 

 

eRK ][   is the real part of the stiffness-element matrix 
eK ][  . The imaginary part, 

eI  , of the 

effective density is related to the flow resistances of sound-absorbing materials, Hence 
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eReIe  /  corresponds to material damping due to flow resistance. 

By substituting Eq. (10) into Eq. (6), the stiffness-element matrix 
eM ][  is obtained, 

 

)1(][][ eeRe jMM                               (13) 

where 

eeIeReReR MEEEM ]
~

))[/((][ 22  , eReIe EE /                 (14)   

eRM ][  is the real part of 
eM ][ ; e  is the damping effect due to hysteresis between pressure and 

volume strain in sound-absorbing materials. All elements of the mixed sonic field can be superposed 

using Eqs. (4)-(14). This results in the following discrete equation for a global system, 

 

 }{)1(][)1(][
max

1

2

e

e

e

eeReeR pjMjK


  }{2 u              (15) 

The sizes of the matrices and vectors in Eq. (15) are modified to be concurrent with the degree of 

freedom of the global system. }{u  is the nodal-particle-displacement vector. Both the stiffness and 

mass matrices for the fields contained in gas and sound-absorbing materials have complex parameters. 

Eq. (15) describes simultaneous equations with complex parameters. If known values are assigned to 

the excitation angular frequency   and the nodal-particle-displacement vector }{u , Eq. (15) can be 

solved to obtain an unknown p  for the frequency response.   

2.2 Calculation of the Contribution of Each Element to Modal Damping 

We now present a calculation method to obtain the contributions of each element to modal 

damping for the mixed sonic fields contained in gas and sound-absorbing materials. 

Considering conditions of resonance, the homogeneous equation Eq. (15) corresponds to the 

following complex-eigenvalue problem: 

  }0{}{)1(][)1()()1(][ )(

1

)(2)(
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





n
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e

e

n
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n

eeR jMjjK            (16) 

where maxe denotes the number of the elements, }{ )( n  is the complex eigenvector, and 
)(n

tot  is the 

modal-loss factor. The superscript )(n  denotes the nth eigenmode, 2)( )( n  is the real part of the nth 

complex eigenvalue, and )(n  is the nth angular-resonant frequency. 

 Next, the parameters se  and ke  are introduced as 

 

max/ eke  , 1ke , max/ ese  , 1se                  (17) 

 

where max is the maximum value among the elements' material-loss factors e  and e  ( e  = 1, 2, 

3, … maxe ). Under the assumption that 1max  , solutions of Eq. (16) are expanded using the small 

parameter max j  as 
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In these equations, under conditions 1ke  , 1se  , and 1max   , we can obtain 

1max ke  and 1max se . Thus, both se  and ke  are considered to be small parameters 

like   . In these equations, 0

)( }{ n  , 1

)( }{ n  , 2

)( }{ n ,...  , 
2)(

0 )( n  , 2)(

2 )( n  , 2)(

4 )( n ,...  , and )(

1

n  , 
)(

3

n ,
)(

5

n ,...  have real quantities. 
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The following equations are derived by substituting Eqs. (18), (19), and (20) into Eq. (16), and 

adopting the approximation from the 0  order to the 1  order: 
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From these equations, the modal-loss factor 
)(n

tot  can be obtained using the material-loss factors e  

of each element e comprising 
*

e , each element’s share 
)(n

keS  of the total kinetic energy, the 

material-loss factors, e , of each element e comprising 
*

eE , and each element’s share, 
)(n

seS , of the 

total strain energy. Eigenmodes 
0

)( }{ n  in Eq. (21) are real, and can be obtained by solving the real 

eigenvalue problem corresponding to the equation by eliminating all damping terms in Eq. (16).  

3. Experimental and Calculation Results 

3.1 Experimental setup of test piece 

The test piece emulating the upper back, cabin, and trunk of a car is shown in Fig. 1. This enclosed 

shape is made using acrylic boards with thickness 10 mm, and it enabled it to divide the middle. In 

case it divides, as for the thickness of the used acrylics board, the bottom fixes an acrylics board as 20 

mm, and the acrylics board was made to carry out movable (of the top) up and down (in Fig. 1 red 

portion). The automobile trim (urethane foam and felt, which are widely used for sound isolation in 

cars), which is permeable in the gray portion of Fig. 1, was pinched by the up-and-down acrylic boards 

and considered as two closed spaces differing in magnitude. The key features of this test piece are that 

urethane foam divides the two closed spaces, and that the magnitude (i.e., area ratio of ventilation 

material to resin material) of the felt is changeable. In an actual car, the sound property (i.e., balance 

between sound absorption and sound insulation) will differ for each combination of ventilation and 

interior materials. Since the ventilation-material ratio is determined by the design, attachment of other 

parts, intensity, and so forth, the sound property of the optimal ventilation material for each area ratio 

could be examined for an assumed tire noise. Acoustic input are carried through a pipe to the smaller 

enclosed space. Mic C was installed near the entrance of the pipe, with Mic B installed near the center 

of the upper surface. Mic A was placed in between the upper surfaces of the larger and smaller closed 

spaces. The noise reduction was then calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Experimental setup of test piece 
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3.2 Comparison of Experimental and Calculation Results 

The FE model is shown Fig. 2. Altair Hypermesh was used for model creation. The red portion 

denotes the enclosed spaces, the blue portion represents felt, and the green portion represents urethane 

foam. Both the urethane foam and felt used here are arranged in a 10 mm thick pile, and the smaller 

closed space faces the urethane foam while the larger closed space faces felt (refer to Fig. 1). Fig. 3 

presents a diagrammatic chart, Fig.3a compares the experimental results and the calculation results of 

Mic A-B, Fig 3b compares the experimental results and the calculation results of Mic A-C. Mic A-B  

is noise reduction:  

AB PPP /log20  [dB]                             (22) 

Although some of the peaks have shifted, the microphones mostly reproduce the same result. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 FE model (Air and Urethane foam and Felt) 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

a. noise reduction of Mic A-B                 b. noise reduction of Mic A-C 

Fig.3 Comparison between experimental results and calculation results (porous media) 
 

Next, the thicknesses of urethane foam and felt were varied. The conditions included urethane foam: 

0 mm, felt: 20 mm; urethane foam: 5 mm; felt: 15 mm, urethane foam: 15 mm; felt: 5 mm, and urethane 

foam: 20 mm; felt 0 mm. Noise reduction of Mic A-B and Mic A-C from the 500 Hz band to the 1600 

Hz band are shown in Table 1. U in Table 1 is urethane foam and F is felt. Combinations expressed in 

yellow in Table 1 showed the poorest sound insulation, whereas those in blue show the best. At Mic 

A-B, noise in the 1000 Hz and 1250 Hz bands is reduced the most by setting urethane foam thickness 

to 20 mm. Below the 630 Hz band, noise is reduced by setting felt thickness to 20 mm. At Mic A-C, 
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urethane foam should be thickened for noise reduction, except at 1250 Hz band. A felt thickness of 15 

mm leads to greatest noise reduction only at in the 1250 Hz band. Noise-reduction behavior nearly 

reversed at 1000 Hz for Mc A-B and at 800 Hz for Mic A-C. 

 

Table 1. Calculation results under varied thicknesses of the porous media 

  

4. Conclusion 

A test piece imitating the upper back of a car was created, and the sound absorption between the 

sound-source side and the car interior due to the arrangement of the trim (urethane foam and felt) was 

checked by experimental measurement. An FE model was created and the sound-damping 

characteristics were calculated. Urethane foam and the felt were used to model internal air with a 

complex effective density and a complex bulk modulus of elasticity. We computed the distributions of 

the mode-damping contributions of each element in the considered space. This calculation was verified 

to have sufficient accuracy. 

Moreover, we repeated the calculations under various thicknesses of the urethane foam and felt, and 

determined the combination of thicknesses necessary to reduce maximum noise by a third of an octave. 

We expect that these results should prove useful in automobile development. 
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Mic A-B 500Hz band 630Hz band 800Hz band 1000Hz band 1250Hz band 1600Hz band 

U0 mmF20 mm −8.70  −27.74  −21.74  −18.98  −9.83  −13.75  

U5 mmF15 mm −8.55  −27.05  −21.62  −19.77  −9.86  −13.77  

U10 mmF10 mm −8.47  −27.11  −21.62  −20.09  −10.19  −14.55  

U15 mmF5 mm −8.37  −26.44  −21.56  −20.96  −10.90  −16.24  

U20 mmF0 mm −8.24  −26.82  −21.84  −21.05  −11.86  −18.52  

Mic A-C 500Hz band 630Hz band 800Hz band 1000Hz band 1250Hz band 1600Hz band 

U0 mmF20 mm −16.16  −31.82  −21.24  −28.22  −20.72  −19.54  

U5 mmF15 mm −16.80  −32.06  −21.65  −29.78  −19.99  −19.46  

U10 mmF10 mm −17.22  −32.22  −21.56  −29.66  −19.99  −20.23  

U15 mmF5 mm −17.68  −32.45  −21.79  −29.53  −19.51  −20.12  

U20 mmF0 mm −17.92  −32.54  −21.70  −29.07  −20.13  −21.37  


