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Abstract. This paper deals with dynamic responses of a finger protected by viscoelastic absorbers 

under impact forces. Restoring forces of a finger and absorbers are measured using Levitation Mass 

Method proposed by Fujii. In this paper, we carry out numerical analysis of dynamic responses for 

the finger protected by the absorbers under same conditions with the experiment using LMM. The 

absorbers and the finger are modeled by nonlinear concentrated springs using power series of their 

elongations. We propose that the springs have nonlinear complex spring constants to represent 

changes of the hysteresis as their elongations progress. A finite element for the nonlinear complex 

spring is newly expressed using the relative displacement between the nodes on the ends of the 

spring. The nonlinear complex spring for the finger is inserted between the nonlinear complex 

springs for the two absorbers. These nonlinear complex springs are connected in series. Further, 

these nonlinear complex springs are attached to the levitated block, which is modeled by 

three-dimensional finite elements. By colliding the block with the finger inserted between absorbers, 

transient responses of this system are computed. The experimental data are compared with the 

calculated ones using our proposed FEM. 

1. Introduction 

We often use isolation using concentrated springs to protect structures (e.g. electronic apparatus, 

medical apparatus and precision apparatus) from undesirable impacts and external vibrations. 
But, these lightweight structures sometimes do not have high rigidity. In such cases, these 

structures are regarded as elastic bodies. Some concentrated springs as isolating elements have 
nonlinear relations between load and displacement. Thus it’s important to clarify dynamics for the 
coupled problem between elastic bodies and nonlinear springs. 

Many researchers have investigated for the nonlinear vibrations of concentrated masses with 
concentrated springs. For instance, Feeny studied this type of system using the proper orthogonal 
modes (POM) technique [1]. The dynamic responses for large-scale problems, which consisted of 
beams supported by nonlinear concentrated springs were studied by Kondou. Further, Kondou also 
proposed an efficient identification method for the nonlinear stability in large-scale problems [2]. 
Shaw proposed nonlinear modal analysis, and he applied it to a simply supported beam connected to 
a nonlinear concentrated spring [3]. Previously, we proposed a fast numerical method to calculate the 
nonlinear vibrations in an elastic block or a viscoelastic block with a nonlinear concentrated spring. 
In this study, one end of the nonlinear spring is attached to the ground [4,5]. Moreover, we extended 
the proposed method to deal with the dynamic phenomena of viscoelastic blocks connected with a 
nonlinear concentrated spring having a restoring force expressed as functions of the relative 
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displacement between the two ends of the spring [6]. In the numerical analysis, the discrete equations 
in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal 
coordinate corresponding to linear eigenmodes. In this calculation, modal damping is also 
transformed. The transformed equations are integrated numerically in extremely small degree-of 
freedom. 

Some shock absorbers often have nonlinear hysteresis in their dynamic characteristics. For 
example, we observed phenomena that the hysteresis increases as the elongation of the shock 
absorbers increase. However, there are few reports to study coupled vibration between elastic 
structures and the shock absorbers having nonlinear hysteresis. 

We extend our proposed method to deal with vibration analysis using finite element method for 
elastic structures including nonlinear concentrated spring with nonlinear hysteresis [7]. The restoring 
force of the spring is expressed as power series of its elongation. The restoring force also involves 
nonlinear hysteresis damping. Thus, complex stiffness is introduced for not only the linear 
component but also nonlinear components of the restoring force. Finite element for the spring is 
expressed and is attached to elastic structures modeled by linear solid finite elements. The discrete 
equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using 
normal coordinate corresponding to linear eigenmodes. In this calculation, modal damping is also 
transformed. The transformed equations are integrated numerically in small degree-of freedom. This 
numerical method is applied for a finger protected by absorbers under impact forces as follows. 

To protect human bodies such as arms [8,9], fingers and legs from impacts in mechanical 

apparatuses, buildings or transporters when doors are closed, viscoelastic rubbers are sometimes 

inserted between the doors and the frames around the doors. The rubbers have rolls of shock 

absorbers to decrease the impacts using viscoelasticity. These rubbers have many kinds of shapes to 

improve the performance of shock absorbers. In one of them, there are thin rubbers having hollow 

cross sections. For these types of the shock absorbers, buckling phenomena are sometimes utilized to 

decrease impacts efficiently. Thus, viscoelastic absorbers have nonlinear restoring force under 

relatively large load. The viscoelastic absorbers sometimes have nonlinear hysteresis in their 

dynamic behaviors. Thus, it’s of importance to clarify nonlinear dynamic characteristics of 

viscoelastic shock absorbers with elastic structures under impact load. We apply our proposed 

method using Finite Element Method with the nonlinear complex springs to this problem. In the 

numerical method, the viscoelastic absorbers are modeled as the nonlinear springs with nonlinear 

hysteresis. The restoring force of the spring is expressed as power series of its elongation. The 

restoring force also involves nonlinear hysteresis damping. By colliding a block with a pair of 

viscoelastic shock absorbers with/without a living finger, velocities of the block are observed using 

Levitation Mass Method proposed by Fujii [7]. The experimental data [7] are compared with the 

calculated results using our proposed FEM. 

2. Outline of Experimental Results 

Using the Levitation Mass Method, velocity of the block is observed by colliding a block with a 

pair of viscoelastic shock absorbers. A living finger is set between the two absorbers. And the 

velocity of the block is also observed. Using the velocities, we studied the restoring forces. 

 

 

 
 
 

 
 
 
 
 

Fig. 1 A pair of viscoelastic shock absorbers 
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Fig.2 Experiment setup [7] 
 

Figure 1 shows the cross sections of the pair of the viscoelastic absorbers. The shape of the 

absorber is tube with a thickness of 3[mm]. As shown in Fig.1, the cross sections of the absorber 

have D-type shapes. The absorbers are made of foam rubber. Figure 2 shows outline of the 

experimental setup using Levitation Mass Method proposed by Fujii [7]. This experimental system 

has a block, which can smoothly move along a guide in z  direction using a pneumatic linear 

bearing. Therefore, the block is levitated by air film having 8[  m] thickness at the interfaces 

between the guide and the block. By using this system, the block can travel toward z direction under 

low friction. One of the viscoelastic shock absorbers is connected with a rigid base. Another 

viscoelastic absorber is attached to the levitated block. The block is pushed in negative z direction 

from the initial position z0=0 by a human hand. Then, with initial velocity 0v , the block is collided 

with the pair of the viscoelastic shock absorbers. After the collision, velocity of the transient 

response for the block is observed using an optical interferometer. A corner cube is fabricated on the 

levitated block to receive laser beam for the interferometer. Acceleration of the block can be 

calculated by differentiation of the observed velocity. By integrating the measured velocity, position 

of the block is also determined. Inertia force can be calculated by product of the mass of the block 

and acceleration. And the inertia force is converted to restoring force by changing its sign. Then, 

hysteresis curve can be obtained using the relation between the position and the restoring force. 

Figure 3 shows observed restoring forces. The ordinate is restoring force, and abscissa shows 

displacement. The red and green lines show the results of the absorbers without the finger. Under 

small initial velocity, the restoring force in for the red line has a characteristic of softening type 

spring. And its hysteresis in the restoring force is increasing as the displacement changes from 

0[mm] to –5[mm]. Under condition of large initial velocity, the slope of the green curve suddenly 

changes to have harder spring constant when the displacement is –9[mm]. While the displacement 

progresses from –9[mm] to –10[mm], the hysteresis in the green line decrease. These behaviors are 

caused by the buckling phenomena of the shock absorbers. Note that there is no permanent 

deformation when the hollow parts of the D-shaped absorbers are buckled. The blue line represents 

the result of the shock absorbers with the human finger. The slope of this curve also changes when 

the displacement is about –9[mm]. The blue curve also shows soft-hardening characteristics in the 

restoring force. While the hysteresis decreases from –9[mm] to –14[mm], the hysteresis in the blue 

line increases from 0[mm] to -9[mm]. The dynamic characteristics of the absorbers with/without the 

finger are similar. But, the restoring force for the viscoelastic absorbers without the finger has 
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sharper change than that for the absorbers with the finger. We regard that this phenomenon is due to 

elastic deformations of the living finger. 

 

 

 

 

 

 

 

 

 

 

 

 

3. Numerical analysis  

Considering the experimental results in the previous chapter, the following behaviors for the 
restoring forces of the viscoelastic absorbers with/without the living finger are summarized. 
 (a) There are behaviors as nonlinear springs. 
 (b) The hysteresis increases when the deformation of the springs become large. The hysteresis 
inversely decreases after the deformation become larger. 
 (c) Near the regular deformations, the slopes of the curves in the restoring forces increase. 

The phenomena (a) and (b) are common behaviors for the absorbers with/without the finger. The 
phenomenon (c) appears the viscoelastic absorbers with/without the finger under large deformation. 
The change of the stiffness for the absorbers with the finger is smaller than that for the viscoelastic 
absorbers without the living finger. 

To simulate these phenomena appeared in the experiment, we use the FEM model as shown in 
Fig.4. We use two nonlinear concentrated springs having nonlinear hysteresis for the pair of the 
viscoelastic shock absorbers and one nonlinear spring for the finger to simulate the restoring forces 
in Fig.3. We propose a finite element for springs having nonlinear complex spring constants. The 
nonlinear complex spring of the finger is connected in series between the two nonlinear complex 
springs of the absorbers. These springs are attached to the levitated block using three-dimensional 
solid finite elements. Detail numerical procedures are shown in the following sections. 

 

 

Fig.4 Simulation model 
 

 

Fig.3 Experimental results of restoring forces for viscoelastic shock absorbers 
with/without a finger [7] 
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3.1 Discrete Equation for Nonlinear Complex Concentrated Springs (Viscoelastic Shock 

Absorbers and a Living Finger) 

The pair of the viscoelastic shock absorbers is modeled by using two concentrated nonlinear 

springs with nonlinear hysteresis. For the finger, we also use another nonlinear spring with nonlinear 

hysteresis. We assume that the m-th nonlinear concentrated spring with viscoelasticity for them has 

principal elastic axis in z  direction. The m-th nonlinear concentrated spring is connected between 

the nodal points 
m and 

m .We denote displacements as 
mzU
and 

mzU
 in z  direction at the nodal 

points 
m  and 

m , respectively, Nonlinear restoring force 
mzR

 of the m-th spring using power 

series is given for nodal force at the point
m . Thus, the restoring force 

mzR
 is expressed using the 

relative displacement  mzmz UU   as    221 mzmzmzmzmzmzmz UUUUR      
3

3 mzmzmz UU  , 

mzmz RR   ,,
mxmymx RRR   0 myR . Further, linear hysteresis damping is introduced as 

 mzmzmz j 111 1   . mz1  is the real part of mz1 , and mz1  is the material loss factor of the 

concentrated spring. j  is the imaginary unit. Moreover, nonlinear hysteresis damping is also 

introduced as  mzmzmz j 222 1   ,  mzmzmz j 333 1   and  mzmzmz j 434 1    in the same manner. 

mzmz 32 ,  and mz4 are the real part of mzmz 32 , and mz4 , respectively. mzmz 32 ,  and mz4 are the 

nonlinear components of material loss factor for the concentrated spring, respectively. These 

relations can be rewritten in the matrix form as: 

       
msmmm dUR  1  (1) 

Where,  mR  is the nodal force vector at the node
m .  smU  is the nodal displacement vector at 

the node 
m .  m1  is the complex stiffness matrix including only linear term of the restoring force. 

 md  is the vector involving nonlinear terms of the restoring force. 

3.2 Discretized equations of an elastic structure 

It is assumed that equations of motion for the levitated block are expressed under small deformation. 

We consider that damping of the levitated block using complex modulus of elasticity )1( bjEE  . 

The real part E  of the E  represents the Young’s modulus of elasticity. b  is the material loss 

factor of the block.  All elements related to the structure are superposed, the equations in the entire 

domain of the levitated block are obtained as: 

        bbbbb FUKUM   (2) 

Where,  bF , bU ,  bM  and  bK  are the force vector, the displacement vector, the mass matrix 

and complex stiffness matrix, respectively. We mainly use isoparametric hexahedral elements with 

non- conforming modes [10,11] for the later numerical computation. 

3.3 Discrete equation for combined system between a block and viscoelastic springs 

The m-th restoring force  mR  in Eq. (1) for the nonlinear complex springs are added to the 

corresponding nodal forces at the nodal points 
m and m . We also add the restoring force at the 

attached node  between the nonlinear concentrated spring for one of the viscoelastic shock 

absorbers and the levitated block. The following equation in the global system can be obtained: 

          FdUKUM  ˆ  (3) 
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Where,  U ,  F ,  M  and  K  are the displacement vector, the external force vector, the mass 

matrix and the complex stiffness matrix in the global system, respectively.  d̂  is the nonlinear 

complex restoring force of the nonlinear springs in series for the absorbers and the finger.  d̂  has 

the identical vector size to degree- of- freedom of Eq.(3). 

3.4 Conversion from Discrete Equations in Physical Coordinate to Nonlinear Equations in 

Normal Coordinate 

Long computational time requires to compute Eq. (3) in physical coordinate, directly. In this 

section, a numerical procedure is explained to decrease the degree-of-freedom for the discrete 

equations of motion. 

First, it is assumed that linear eigenmodes }{ )(i of vibration can be approximated to the real 

eigenmodes 0

)( }{ i . Next, by introducing normal coordinates ib
~

 corresponding to the linear 

eigenmodes 
0

)( }{ i , the nodal displacement vector can be expressed using both 
0

)( }{ i  and ib
~

 

[12]. 

     



1

0

~~

i

i

ibU   (4) 

Substituting of Eq.(4) into Eq.(3), the following nonlinear ordinary simultaneous equations as to 

normal coordinates ib
~

can be expressed as: 

    lk

j

j

k l

ijklkj

j k

ijki

i

i

ii

toti bbbEbbDbbb
~~~~~~~~~~ 2)(

0

)(

0   


0
~
 iP ,  i,j,k,l =1,2,3,…     

(5) 
    FP

Ti

i 0

~~
 ,     T

mizmiymixmizmiymixiyixiziyix

i  ,~,~,~,,~,~,~,,~,~,~,~,~~
221110    , 

  



1

2
~~~~~~~~~~~

m

mkzmjzmkzmjzmkzmjzmkzmjzmizmizmzijkD   , 

 

mlzmkzmjzmlzmkzmjzmlzmkzmjzmlzmkzmjz

m

mlzmkzmjzmlzmkzmjzmlzmkzmjzmlzmkzmjzmizmizmzijklE









~~~~~~~~~~~~

~~~~~~~~~~~~~~~

1

3




  

In Eq. (5), )(

0

i  is the i-th natural frequency.  i
tot  is the i-th modal loss factor. Because Eq. (5) 

has much smaller degree-of -freedom than that of Eq. (3), we can save computational time. In Eq. (5), 

dot stands for partial differentiation with respect to time t. miz
~  is the z-component of the 

eigenmode   0
~ i  at the attached nodes 

m of the nonlinear complex springs. 

3.5 Nonlinear Impact Response 

Nonlinear impact responses are computed using Runge-Kutta-Gill method to Eq.(5). In the 

numerical integration, we give an impact for the force vector  F  in Eq. (5). 

4. Numerical results and discussion 

The same initial velocities as the experimental values in Fig.3 are given to the simulation model of 

the levitated block. We computed the restoring forces using the simulation model as shown in Fig.4 

by colliding the block with the viscoelastic shock absorbers with/without the finger. In this figure, 

the levitated block is modeled as an elastic body using finite elements. The pair of the viscoelastic 

shock absorbers and the finger are modeled using nonlinear complex springs to consider nonlinear 

damping. We set an origin of this model on the position where the levitated block begins to contact 

with the pair of the absorbers with/without the finger. Firstly, the real part of the nonlinear spring 
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constants are identified using backbone curves from the experiment. Next, we determine the 

linear/nonlinear loss factors in the proposed nonlinear complex spring constants by fitting curves of 

the nonlinear restoring forces. 

4.1 Numerical Results for a Pair of Shock Absorbers without a Finger  

The following nonlinear complex spring constants are identified for the restoring forces of each 

absorber of two without the finger. We use the nonlinear spring constants from the first to the 

seventh components of power series.  
3

1 1000.1 mz  [N/m],  20.01 mz  [-], 6

2 1005.1 mz  [N/m2], 05.02 mz  [-],  

9

3 1020.2 mz  [N/m3], 06.03 mz  [-], 11

4 1080.6 mz  [N/m4], 06.04 mz  [-],  

13

5 1030.3 mz  [N/m5], 05.05 mz  [-], 00.06 mz      [N/m6],  00.06 mz  [-],  

18

7 1050.1 mz  [N/m7], 09.07 mz  [-]                  

Figure 5 shows the calculated restoring forces of the pair of the viscoelastic shock absorbers 

without the finger in comparison with the experimental ones. In the figure, the red curves show the 

results under small initial velocity, while green curves show the results under the large initial 

velocity. Both results are consistent qualitatively between the experimental curves and the calculated 

curves. In special, the slopes of the experimental/calculated curves increase near the deformation –

9[mm]. The changes of the hysteresis in the curves can also be computed. Note that these 

characteristics cannot be reproduced using the only linear term of hysteresis damping. We can 

confirm the consistency between the experiment and the numerical analysis by introducing the 

nonlinear complex springs in series. 
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Fig. 5 Hysteresis curves of a pair of viscoelastic shock absorbers without a finger from FEM 
 

4.2 Calculated Results for a Pair of Shock Absorbers with a Finger  

Next, to determine the parameters for the living finger, we compute the restoring forces of the 

shock absorbers with the finger by varying the nonlinear complex spring constants of the finger. For 

this computation, we used the previously determined nonlinear complex spring constants for the 

absorbers. We connected these nonlinear complex springs in series as shown in Fig.4. Finally, we 

identified the following nonlinear complex spring constants for the restoring forces of the living 

finger. We use the nonlinear spring constants from the first to the seventh components of power 

series as follows. 
2

1 1050.7 mz   [N/m],  20.01 mz  [-], 00.02 mz  [N/m2], 00.02 mz  [-],   

00.03 mz        [N/m3], 00.03 mz  [-], 00.04 mz  [N/m4], 00.04 mz  [-],   
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12

5 1050.4 mz  [N/m5], 10.05 mz  [-], 00.06 mz  [N/m6], 00.06 mz  [-],   
17

7 1040.3 mz  [N/m7], 10.07 mz  [-] 

Figure 6 shows comparison between the experimental restoring curve of the shock absorbers with 

the living finger under an initial velocity =-0.249[m/s] and calculated ones using these parameters. 

As can be seen in the Fig 6, the computed and the experimental curves agree well. Consequently, we 

confirm that our proposed method is valid. 

The changes of the slopes appear both in the experimental and calculated curves near the 

deformation = -9.0[mm]. These changes of the slopes are less than those in the restoring forces of the 

absorbers without the finger discussed in the previous section 4.1. We think this phenomenon is due 

to the elasticity and viscoelasticity of the living finger.  

The rigidity of the finger is larger than the viscoelastic shock absorbers under small deformation. 

Initially, the pair of the soft viscoelastic absorbers deforms, and then the absorbers are compressed. 

Due to the compression, the stiffness of the absorbers become larger than the stiffness of the finger. 

Then, the finger deforms. 

 

 

 

 

 

 

 

 

 

 

 
 

                                                        

Fig. 6 Hysteresis curves of a pair of viscoelastic shock absorbers with a finger from FEM 

4.3 Numerical analysis to study dynamic errors of experimental system using LMM 

In this section, to check dynamic errors of the levitated block, we study accuracy of the 

measurement system using the Levitation Mass Method. To study undesirable dynamic behaviors for 

this system, we investigated consistency between displacement cD at the corner cube and the 

displacement 
gD  at the center of gravity of the block. From the viewpoint of high precision 

measurement, the displacements cD and 
gD  must have the same values. If rigid motions except the 

motions in z direction or elastic deformations of the block increase, the undesirable differences 

between cD and gD will increase. We obtained the ratio 757371.00000021/ gc DD  when the 

displacements reach up to the local maximal values at t=0.600 [sec]. From this ratio, we can regard 

that the undesirable dynamic components of the levitated block are negligible small. Thus, we 

confirm that all of the restoring forces in chapter 4 are free from the dynamic errors due to the 

undesirable behaviors of the block in the measurement system. 

5. Conclusion 

By introducing the proposed complex nonlinear spring elements connected in series into numerical 

analysis using FEM, we compute impact responses of a human living finger protected by viscoelastic 

shock absorbers. We can reproduced the experimental restoring forces of the pair of the shock 

absorbers with/without the finger. We can simulate the change of hysteresis due to their deformation. 
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