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Abstract. In a free fall interferometer, a test mass or a pair of test masses, which form a part of the 

interferometer, are put in free fall and the free fall acceleration is measured by the interferometer. In 

such interferometers, rotations of test masses in free fall could cause a serious disturbance. The 

rotational disturbance can be minimised by adjusting the location of the centre of mass of each test 

mass. In previous work, a weighbridge method was applied to locate the centres of mass of prototype 

test masses for a gravity gradiometer that employs a free fall interferometer. We present a more detailed 

description of the experiment and measurement results in this paper. Our results show that the 

uncertainty in the weighbridge method is sufficiently small to verify test mases for the gravity 

gradiometer that aims to detect differential acceleration to 0.1 μgal or 1 × 10-9 m/s2. 

1. Introduction 

Free fall interferometers have been used in various instruments and experiments, such as absolute 

gravimeters [1, 2], gravity gradiometers [3, 4] and fifth-force searches in fundamental physics [5, 6]. 

Also, there are prospects to be used to observe gravitational waves in space (e.g. [7]).  

In a typical free fall interferometer, one or more test masses, each of which embedded with a 

retroreflector (such as a corner cube prism or a hollow retroreflector), are put in free fall in high vacuum. 

Each test mass forms a part of the interferometer. A laser beam is directed onto the retroreflector 

embedded in each test mass and acceleration of the falling test mass is measured by the interferometer.  

When such a test mass, embedded with a hollow retroreflector, is put in free fall with a small 

unwanted angular velocity 𝜔, it rotates around its centre of mass (Fig. 1). When the optical centre of 

the retroreflector is offset from the centre of mass of the test mass by 𝑑, the change in the length of 

the optical path in the vertical direction (𝑧-axis) can be expressed as 

 

∆𝑧(𝑡) = 𝑧1 − 𝑧2 = 𝑑(1 − cos 𝜔𝑡).                    (1) 

 

By taking the second derivative of ∆𝑧(𝑡) with respect to time t, the magnitude of acceleration 

disturbance due to a small rotation (𝜔𝑡 ≪ 1) of the test mass can be given by 

   

𝑎𝑧 ≈ 𝑑 ∙ 𝜔2.                                  (2)   

 

This rotational acceleration disturbance could be a limiting factor to achieve high sensitivity in free 

fall interferometers. To minimise the rotational acceleration disturbance, each test mass has to be 

fabricated so that the offset d is as small as possible. Also, the mechanism that puts test masses in free 

fall has to be designed to minimise the angular velocity 𝜔. Angular velocity of a test mass in free fall 

can be measured, for instance, by using an optical lever that employs a four-segment photodiode [4]. 

This paper focuses on a method of estimating 𝑑 by measuring the centre of mass of each test mass. 

This method was briefly introduced in previous work [8]. In this paper, we present a more detailed 

description of the experiment and measurement results.  
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2. Experimental Method 

The centre of mass of a 1 kg artefact can be located within a precision of micrometres by using a 

weighbridge method developed at the Bureau International des Poids et Mesures (BIPM) [9]. This 

method was applied to locate the centres of mass of prototype test masses for a portable interferometric 

gravity-gradiometer in the previous work [8]. A more detailed description of the weighbridge method 

is given in the following sections. 

2. 1 Operation Principle 

The principle employs a weighbridge, fabricated according to the details given in [9], and an electronic 

laboratory balance and a solid support (Fig. 2). The left-hand knife of the weighbridge is centred on a 

brass disc placed on the pan of the balance and the right-hand knife is placed on the solid support. The 

balance (METTLER TOLEDO, ME4002) has a capacity of 4.2 kg and a resolution of 0.01 g. The pan 

is kept at a fixed height by servo-control; the height of the pan is independent of load. The brass disc 

is placed on the pan so that the pan cover will not flex under load.  

When a test object is placed on the weighbridge as shown in Fig. 2, there is no net torque about the 

right-hand knife of the weighbridge in equilibrium. Therefore, the height of the centre of mass of the 

test object can be given by the following relation [9]: 

 

ℎ = (
𝑚0−𝑚1

𝑚0
) 𝐿 + 𝑅1 tan 𝜃1,                        （3） 

 

where L is the length of the span of the weighbridge, 𝑚0 is the mass of the test object and 𝑚1 is the 

change in mass indicated by the balance when the test object is placed as shown in Fig. 2; 𝑅1 is the 

distance between the centre of mass of the test object and the plane defined by the knives of the 

weighbridge; 𝜃1 is the tilt angle of the weighbridge with respect to the horizontal direction. The height 

of the solid support is adjusted to minimise the tilt angle.  

 

 

Fig. 1. Rotation of a test mass (a) a schematic cross-section of a test mass (not drawn 
to scale) falling with a small angular velocity ω (the rotation angle has been 

exaggerated). A laser beam is incident on the retroreflector embedded in the test mass, 
in the vertical direction. (b) the change in the length of the optical path in the vertical 

direction z, caused by the rotation of the test mass. Code: OC= optical centre, G= centre 

of mass of the test mass and d = distance between OC and G. 
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Fig. 2. A schematic view of the first measurement (not drawn to scale). A weighbridge is 
placed between a brass disc on the pan of an electronic laboratory balance and a solid 
support. A test object with mass 𝑚0 is set against the left-hand wall of the weighbridge. 

The height of the solid support is adjusted so that 𝜃1 is nominally zero (𝜃1 has been 
exaggerated for clarity). The brass disc is placed on the pan to prevent the pan cover from 

flexing under load. Code: ℎ = height of the centre of mass of the test object, 𝐿 = span of 

the weighbridge, 𝑅1 = distance between the centre of mass and the plane determined by 
the knives of the weighbridge and 𝜃1 = tilt angle of the span with respect to the horizontal. 

 
 

When the test object is placed against the right-hand wall of the weighbridge, as shown in Fig. 3, 

we obtain the following relation in equilibrium [9]: 

 

ℎ =
𝑚2

𝑚0
𝐿 − 𝑅2 tan 𝜃2,                        （4） 

 

where 𝑚2 is the change in mass indicated by the balance when the test mass is placed as shown in 

Fig. 3, 𝑅2 is the distance between the centre of mass of the test object and the plane defined by the 

knives and 𝜃2 is the tilt angle of the weighbridge with respect to the horizontal direction.  

When 𝜃1 = 𝜃2 (≡ 𝜃) and 𝑅1 = 𝑅2 (≡ 𝑅), the tilt angle can be obtained by eliminating h from 

Eqs (3) and (4) [9] 

 

tan 𝜃 = (
𝑚1+𝑚2−𝑚0

𝑚0
)

𝐿

2𝑅
.                            (5)  

 

By eliminating 𝜃 from Eqs (3) and (4), the height of the centre of mass of the test object is given by 

the following relation [9]:  

 

ℎ= (
𝑚0−𝑚1+𝑚2

𝑚0
)

𝐿

2
.                        （6） 

 

We have used this relation for determining h. Relations for 𝜃1 ≠ 𝜃2 and 𝑅1 ≠ 𝑅2 are discussed in 

Section 2.3. 

 

 

2.2 Determination of L 

A brass cylinder having a nominal diameter of 33 mm was used as a standard to determine L. 

Micrometre measurements show that the height of the standard is 2hst = 60.019 ± 0.006 mm at 25.0 °C.  

The first and second measurements were carried out by positioning the base of the standard against 

the left-hand wall and right-hand wall of the weighbridge, respectively, and m1 and m2 were obtained. 
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By substituting the measured values of m0, m1, m2 and 2hst into Eq. (6), we have determined L. Such a 

determination of L was repeated six times before measuring each test object. The mean 𝐿̅ of L was 

obtained from the repeated measurements.  

 

 

 
 

Fig. 3. A schematic view of the second measurement (not drawn to scale). The base of the 

test object is placed against the right-hand wall of the weighbridge; 𝑅2 is the distance 
between the centre of mass of the test object and the plane defined by the knives of the 

weighbridge; 𝜃2 is the tilt angle of the span with respect to the horizontal (𝜃2 has been 
exaggerated for clarity). 

 

2.3 Estimation of tilt effects 

When 𝑅1 ≠ 𝑅2, Eqs (3) and (4) yield the following relation: 

 

ℎ= (
𝑚0−𝑚1+𝑚2

𝑚0
)

𝐿

2
+

(𝑅1−𝑅2)

2
tan 𝜃.                           (7) 

 

This relation indicates that the difference, ∆ R = R1 –  R2, introduces an additional term in the 

determination of h. The magnitude of this additional term was estimated in the following method that 

is based on the previous work [9]. 

Aluminium thin plates were placed under the solid support to set the tilt angle 𝜃 to 3.3, 6.7, 10 and 

13 mrad. At each angle, m1 and m2 of the standard were measured. The measured values were 

substituted into Eqs (3) and (4), and 𝑅1 and 𝑅2 were estimated, respectively. By least-squares fitting 

of the estimates obtained under those different tilt angles, we have obtained R1 = 43.8 ± 1.8 mm and 

R2 = 44.6 ± 1.7 mm, thus ∆R = −0.8 ± 2.5 mm. When 𝜃 is less than 0.7 mrad, the magnitude of the 

additional term is not more than 1 μm and negligible. By substituting calibration data (see Section 2.4 

for calibration) into Eq. (5), the average tilt angle 𝜃 was estimated to be 0.52 mrad and the additional 

term is negligible. With the standard placed as shown in Fig. 2 or Fig. 3, height measurements show R 

= 41.5 mm. This value is smaller than the obtained values of R1 and R2. This could be due to systematic 

underestimates of the thickness of the aluminium plates by about 6 %.  

When 𝜃1 ≠ 𝜃2, Eqs (3) and (4) yield the following relation: 

 

ℎ= (
𝑚0−𝑚1+𝑚2

𝑚0
)

𝐿

2
+ (tan 𝜃1 − tan 𝜃2)

𝑅

2
.                         (8) 

 

The magnitude of the last term of Eq. (8) has not been estimated as the difference between tan 𝜃1 and 

tan 𝜃2 is not measured by the experiment. Such a difference in the tilt angle could arise, for instance, 

when shims used for fine levelling of the weighbridge are not set properly or the knives of the 

weighbridge have some geometrical imperfections; when one end of the left-hand knife is slightly 

shorter than the other end, the tilt angle would depend on the torque applied to the weighbridge. The 

standard deviation of a single measurement of 𝜃 was about 0.1 mrad in the calibration data. If this 
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amount of difference (𝜃1 − 𝜃2 = 0.1 mrad) arises, the last term of Eq. (8) gives rise to a spurious effect 

of 2 μm. 

 

2.4 Calibration and tests 

 Another brass cylinder with a slot, 3 mm wide and 3 mm deep, cut along a diameter at one end was 

prepared for calibration. Its nominal diameter is 33 mm and micrometre measurements show that the 

height is 2hsl = 59.976 ± 0.006 mm at 25.0 °C.  

  Firstly, the span 𝐿̅ was determined from the measurements of the standard, as described in Section 

2.2. Secondly, the first and second measurements of the slotted cylinder were carried out. Using the 

value of 𝐿̅, the height of the centre of mass of the slotted cylinder was obtained from Eq. (6). Such a 

determination of h was repeated six times within a day and the mean of h was obtained. Such a mean 

of h was determined four times with the slotted end as base and three times with the slotted cylinder 

reversed.  

 

2.5 Test masses  

Two cylindrical test masses (A and B) were prepared for performance tests of a toss-up mechanism 

developed for the portable interferometric gravity-gradiometer [4]. Each test mass is embedded with a 

flat mirror with a diameter of 10 mm. The weight of each test mass is about 15 g. 

The span 𝐿̅ was determined by measuring the standard, as described in Section 2.2; then, the first 

and second measurements of each test mass were repeated six times. The mean of h of each test mass 

was obtained from the six measurements. Such a determination of the mean was made twice on 

different days for each test mass.  

3. Results and Discussion 

Tables 1 and 2 show the measurement results of the slotted cylinder and the test masses, respectively. 

The measurements were carried out at room temperatures from 22 to 26.5 °C. The magnitude of 

temperature change was less than 0.5 °C during one determination. The measured values were 

converted to the ones at 25.0 °C and shown in Tables 1 and 2. 

The means 𝐿̅ determined before measuring the slotted cylinder and the test masses are also given 

in Tables 1 and 2. The standard deviation of a single measurement of L was not more than 0.03 mm. 

The uncertainty 𝛿𝐿 in 𝐿̅ was estimated by adding in quadrature of the standard deviation of the mean 

and the uncertainty 𝛿𝐿p that propagates as (L/h)δhst to L, where δhst is the uncertainty in the height of 

the standard; 𝛿𝐿p was estimated to be 0.015 mm by substituting δhst = 0.003 mm. Uncertainty due to 

the resolution of the balance is negligible in the determinations of L.  

The weighted mean of the seven determinations of 𝐿̅, five for the slotted cylinder and two for the 

test masses, was 149.97 ± 0.02 mm, where the uncertainty is the quadratic sum of 𝛿𝐿p  and the 

uncertainty obtained by propagating the standard deviations of the means. The uncertainties of the 

weighted means of 𝐿̅ shown in Tables 1 and 2 were also obtained in the same manner. The span 

measured by vernier callipers was 149.90 ± 0.05 mm. 

Though the same weighbridge was used throughout the measurements, 𝐿̅ varied from 149.89 to 

150.03 mm (Tables 1 and 2). One of the causes could be some geometrical imperfections of the knives 

of the weighbridge; they are not perfectly parallel to each other and the points that touch the surfaces 

of the brass disc and the solid support might have changed during the measurements. 

The uncertainty 𝛿ℎ in each determination of h was obtained by adding in quadrature of the standard 

deviation of the mean and the uncertainty 𝛿ℎp that propagates as  
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𝛿ℎp = √(
ℎ

𝐿
)

2

(𝛿𝐿)2 + (
𝐿

2𝑚0
)

2

{(𝛿𝑚1)2 + (𝛿𝑚2)2} + (
𝐿

2
− ℎ)

2

(
𝛿𝑚0

𝑚0
)

2

,          (9) 

 

where 𝛿𝑚0, 𝛿𝑚1 and 𝛿𝑚2 are the uncertainties due to the resolution of the balance. When 𝛿𝑚0 =
𝛿𝑚1 = 𝛿𝑚2, we obtain the following relation: 

 

𝛿ℎ𝑝

ℎ
= √(

𝛿𝐿

𝐿
)

2

+ (
3

4

𝐿

ℎ2

2
−

𝐿

ℎ
+ 1) (

𝛿𝑚0

𝑚0
)

2

.                      (10) 

 

We used the standard deviation of ± (0.01/√12) g (≈ 0.0029 g) for 𝛿𝑚0, 𝛿𝑚1 and 𝛿𝑚2 in the 

estimates.  

We have obtained the weighted means of hs = 30.159 ± 0.004 mm for the measurements with the 

slotted end as base and hr = 29.832 ± 0.006 mm for the measurements with the slotted cylinder reversed 

(Table 1). The uncertainty in each of the weighted means is the quadratic sum of 𝛿ℎp  and the 

uncertainty obtained by propagating the standard deviations of the means. The largest contribution to 

𝛿ℎ was from the uncertainty due to δL, which propagates as (h/L)δL.  

  A calculation based on the dimensions of the slotted cylinder shows that the height of the centre of 

mass of the slotted cylinder is 30.153 ± 0.004 mm from the slotted end and 29.824 ± 0.004 mm from 

the other end at 25.0 °C. The uncertainties in these calculated values are primarily due to the 

uncertainty in the micrometre measurements of the height 2hsl. The measurement results from the 

weighbridge method were consistent with the calculated values. However, both of the weighted means 

were 6 μm or more larger than the calculated values; there could be some systematic effects that have 

not been considered in the above analyses. The mean tilt angle, obtained from Eq. (5), varied from 

0.21 mrad to 0.75 mrad in the determinations given in Table 1. The largest tilt angle was 0.75 ± 0.14 

mrad in the fourth determination of hs, where the uncertainty in the tilt angle is the standard deviation 

of a single measurement. By substituting the largest tilt angle into Eq. (7), the last term in Eq. (7) was 

estimated to be −0.3 ± 0.7 μm and negligible. If 𝜃1 is larger than 𝜃2 by 0.28 mrad, which is twice 

of the standard deviation of 0.14 mrad, the last term of Eq. (8) will add 6 μm to h. This effect might 

have caused the overestimates of h. This effect could be reduced, for instance, by using a weighbridge 

with fewer geometrical imperfections, or by replacing the solid support with another electronic 

laboratory balance [10]. In the latter method, a weighbridge is placed between two electronic 

laboratory balances and m1 and m2 are measured at the same time using the two balances; in this 

experimental setup, 𝜃1 and 𝜃2 can be regarded as identical.  

The largest uncertainty in hs was also seen in the fourth determination (Table 1). The standard 

deviation of a single measurement of hs was about twice of the ones of the other determinations. Also, 

the standard deviation of a single measurement of L in the fourth determination was somewhat larger 

than the other determinations. This could be due to unstable mass reading or poor levelling of the 

weighbridge. We will investigate the cause further in the future. 

We have obtained the weighted mean of 12.08 ± 0.03 mm for the test mass A and 12.04 ± 0.03 mm 

for the test mass B. The uncertainty in each of the weighted means is the quadratic sum of 𝛿ℎp and 

the uncertainty obtained by propagating the standard deviations of the means. The dominant 

contributions to 𝛿ℎ were from the uncertainties 𝛿𝑚0, 𝛿𝑚1 and 𝛿𝑚2. 

Equations (9) and (10) show that there are two main sources of uncertainty in the weighbridge 

method: that due to δL, which propagates as (h/L)δL to h, and due to the resolution of the balance. The 

dominant source of uncertainty depends on the mass of the test object. As we have seen, the 

uncertainties in the means of the slotted cylinder, which weighs about 433 g, were primarily due to δL. 

However, the uncertainties in the means of the test masses A and B, each of which weighs about 15 g, 

were dominantly from uncertainties due to 𝛿𝑚0, 𝛿𝑚1 and 𝛿𝑚2.  
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The uncertainties in the measurements of the test masses A and B could be reduced by shortening 

the length of the span of the weighbridge. For example, when the length of the span is half of the one 

used in the above measurements (L ≈ 75 mm), 𝛿ℎp would also be half; the contribution of the last 

term in Eq. (10) reduces and we could measure the heights of the centres of mass of the test masses A 

and B with an uncertainty of ± 0.01 mm.  

The slotted cylinder used for the calibration is much heavier than the test mass A or B. We plan to 

carry out calibration using another cylinder whose mass is similar to that of the test masses. 

The buoyancy force that acts on the test object introduces an additional term of 𝜌𝑉∆ℎ/𝑚0 to Eq. 

(6), where 𝜌 is the density of the ambient air, V is the volume of the test object and ∆ℎ is the distance 

between the centre of mass and the geometric centre of the test object. The centre of mass and 

geometric centre of each test mass lie on the axial axis and the magnitude of ∆ℎ is less than 1 mm. 

Therefore, the additional term of air buoyancy correction is less than 0.5 μm and negligible.  

 

Table 1. The span 𝐿̅ and the height of the centre of mass of the slotted cylinder at 25.0 
°C measured with the slotted end as base hs and with the slotted cylinder reversed hr. 

 Span 𝑳̅ [mm] hs [mm]  hr [mm] 

1st determination  149.911 ± 0.018 n.a. 29.825 ± 0.004 

2nd determination 149.893 ± 0.018 30.155 ± 0.004 n.a. 

3rd determination 149.982 ± 0.015 30.160 ± 0.004 29.831 ± 0.004 

4th determination 150.025 ± 0.020 30.165 ± 0.007 29.841 ± 0.004 

5th determination 149.973 ± 0.019 30.159 ± 0.005 n.a. 

Weighted mean 149.972 ± 0.015 30.159 ± 0.004 29.832 ± 0.004 

Calculated value of h n.a. 30.153 ± 0.004 29.824 ± 0.004 

 

Table 2. The span 𝐿̅ and the heights of the centres of mass of the test mass A and B at 
25.0 °C.  

 Span 

𝑳̅ [mm]  

Test mass A 

h [mm] 

Test mass B 

h [mm] 

1st determination 149.907 ± 0.017 12.11 ± 0.03 12.05 ± 0.03 

2nd determination 149.957 ± 0.019 12.06 ± 0.02 12.04 ± 0.03 

Weighted mean 149.925 ± 0.019 12.08 ± 0.03 12.04 ± 0.03 

 

The heights of the optical centres (hoc) of the test masses were estimated by measuring the 

dimensions with a micrometre. The offset of each test mass was estimated by taking the difference 

between the weighted mean of the height of the centre of mass and hoc, d = |ℎ − ℎoc|. Angular velocity 

of a test mass, put in free fall by using the toss-up mechanism of the portable gravity gradiometer, was 

measured in the previous work [4]. By substituting the largest angular velocity, ω = 1.0 ± 0.4 mrad/sec, 

reported in the previous work [4] into Eq. (2), rotational acceleration disturbance was estimated for 

each test mass; the results are shown in Table 3. The largest rotational acceleration disturbance was 

estimated to be not more than 0.03 μgal (or 3 × 10-10 m/s2), which is sufficiently smaller than the current 

target of the portable gravity gradiometer, 0.1 μgal. 

The requirement for d could be more stringent for gravity gradient mapping, as the angular velocity 

of a test mass seems to be larger on a platform for mapping [11]. We intend to adjust the lengths of the 

test masses to minimise the offsets. Also, we plan to prepare test masses heavier than the test masses 

A and B for future measurements so that d can be adjusted more precisely. 

When d is minimised, the level of rotational acceleration disturbance would be not more than 3 × 

10-11 m/s2. This indicates that the universality of free fall of two test masses, made of different chemical 

compositions, could be tested to a level of several parts in 1012 by minimising d of the test masses. 

This corresponds to about two orders of magnitude improvements compared with previous ground-
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based free fall experiments [5, 6]. To achieve a comparable sensitivity of the best ground tests of the 

universality of free fall, using torsion balances [12, 13], the magnitude of ω has to be reduced by a 

factor of 3. To achieve the upper limits placed by a recent space test [14], ω has to be reduced by a 

factor of ten. 

In the portable gravity gradiometer, the location of the centre of mass of the optical table seems to 

affect the magnitude of the acceleration disturbance [15]. The weighbridge method could also be used 

to locate the centre of mass of the optical table. 

 

  Table 3. The optical centres hoc and offsets d (= |ℎ − ℎoc|) at 25.0 °C, and rotational 

acceleration disturbances estimated by using the angular velocity of 𝜔 = 1.0 ± 0.4 mrad/sec 
reported in [4]. 

  Test mass A Test mass B 

Optical centre hoc  [mm] 11.911 ± 0.006 11.911 ± 0.006 

Offset d   [mm]  0.17 ± 0.03  0.13 ± 0.03 

Rotational acceleration disturbance az  [μgal]  0.017 ± 0.014  0.013 ± 0.011 

 

4. Conclusion 

The centres of mass of the test masses prepared for performance tests of the interferometric gravity 

gradiometer were measured by using the weighbridge method developed for kilogram standards at the 

BIPM. The offset of the optical centre from the centre of mass was estimated for each test mass and 

its rotational acceleration disturbance was estimated for the gravity gradiometer. The largest rotational 

acceleration disturbance was estimated to be not more than 0.03 μgal. This level of disturbance is 

sufficiently small for the gravity gradiometer, and also for absolute gravimeters, whose accuracy is a 

few μgal.  
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