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Abstract. We had derived the explicit analytical expression of the complex wave number of a
longitudinal wave in a viscoelastic rod and a flexural wave in a viscoelastic beam. In this study, we
deal with the longitudinal waves in viscoelastic rods such as cork. This paper focuses on the inverse
analysis method to identify the viscoelasticity of a specimen using the acoustic impedance of a
viscoelastic rod obtained from the experiment. This method consists of inverse calculations for each
step of the physical model. With our simple inverse formulas, it is possible to obtain the complex
wave number from the characteristic impedance. It is also possible to identify viscoelasticity from
the complex wave number. Furthermore, we developed an inverse calculation method to identify the
characteristic impedance of the specimen from the acoustic impedance after the specimen. We
confirmed that the conditions of direct analysis are reproduced by inverse analysis.

1. Introduction

Among shock-absorbing and sound-absorbing materials, cork behaves as a homogeneous
viscoelastic body without breathability. Policarpo et al. [1] hammer-excited a cork specimen
sandwiched between steel rods on both sides. They identified the storage modulus and loss factor of
the cork specimen for each eigenmode from the frequency response function.

We have studied stress waves propagating in viscoelastic rods, beams, and plates [3], [4]. In the
previous study [4], we calculated the acoustic impedance of a cork rod using our formulas of the
complex wave number. The calculated results were validated via a comparison with the data of
Policarpo et al. [1].

Many studies have identified the physical properties of a specimen from acoustic impedance.
However, many of them are problems of mathematical scattering. Mouhtadi et al. [2] irradiated
ultrasonic waves onto plates such as polyethylene to identify the mass density, elastic modulus of the
specimen, and attenuation constants in the specimen and air. In their study, the acoustic impedance
between the transmitter and the receiver was used for identifying the physical properties. However,
they assumed that the attenuation constants in the material and in air are proportional to the first and
second powers of the frequency, respectively.

Furthermore, we have studied an inverse analysis method for determining viscoelasticity from the
acoustic impedance of a viscoelastic rod. Our study aims at low frequencies below several kilohertz.
We use the explicit formulas expressing the complex wave number (real wave number and
attenuation constant) for given viscoelasticity (storage modulus and loss factor) [3]. Our formulas are
based on the wave propagation in viscoelastic rods and plates, and we do not assume linear and
quadratic frequency dependence.
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In this paper, we show the inverse analysis method for obtaining viscoelasticity when the acoustic
impedance of the system is obtained. Each step of the inverse analysis traces the steps of direct
analysis in reverse.
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Fig.1. Experimental setup of Policarpo et al. [1]

2. Applicability to the Inverse Calculations - Estimation of Viscoelasticity from Acoustic
Impedance

In our previous study [4], we calculated the complex wave number (real wave number and
attenuation constant (factor)) using the viscoelastic data estimated by Policarpo et al.[1]
Subsequently, we calculated the acoustic impedance from the complex wave number.

The acoustic impedance of the whole system Z{,. in Fig. 1 can be calculated from the frequency
response function of Policarpo et al. [4]

For Fig. 1, the acoustic impedance of the whole system and the specimen can be expressed as
follows [4]:

*

Ztot — (Z ;3 /Z Steel )+ I tan (a)LSteel /CSteeI) | — \/__1
Z Steel 1 + I (Z 23 /Z Steel )tan (a)LSteeI /CSteeI )
where 1)

ESteeI (1_ Vsteel )
Psteel (1 T Vsteel )(1 - 2VSteeI )

ZSteeI = pSteeICSteeI ! CSteel :\/

*

1+ sz tanh[(a +if)Lep | coth[(er +i8)Lp |+ ZZSP
Z;3:Z;p‘ 7" : :Z;P' 7" =,
e ipe] 1 2 cotlla +if)Ly] @
3 3
. po(f+ia)
=" 7
P +a

where

w : Radial frequency [rad/s], p : mass density of the specimen [kg/m?3],

B and a :Real wave number and attenuation constant in the specimen, respectively
(Egs. (5) and (6)),

755 : Acoustic impedance as viewed from the left end of the specimen [Pa - s/m],

Z., - Characteristic impedance of the specimen [Pa - s/m],
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L : Length of the specimen [m],

Z.. - Characteristic impedance of the steel rod [Pa - s/m],
Cseer - Phase velocity in steel [m/s], psteer : Mass density of steel [kg/m?3],
Voo - POISSON’S ratio of steel [-], L, : Length of the steel rod [m],

Z; = Z;b ~ iZSteeI tan(Q)LSteel/CSteeI) (3)
: Acoustic impedance viewed from the left end of the rightmost steel rod [Pa - s/m],
Relations between hyperbolic functions

cothl(a +if)Lss ] = [ sinh(2aL g, )-isin(2/4Ls, )J/[ cosh(2al, ) —cos(2/AL; ). 4)
Real Wave Number [1/m]
T e T 1 1
,B(a))—a)LE,(wJ {(lﬂanzé)‘/z +1+tan25} ©
Attenuation Constant [1/m]
o T 11 F
a(a))_wLE'(a’)} [(1+tan25)l/2 1+tan25} ’ ©
where

E'(w): Storage modulus of the specimen [Pa],
tand: loss tangent (loss factor) of the specimen[-].

In this study, we investigate the inverse method for obtaining viscoelasticity when the acoustic
impedance of the system is obtained. Each step of the inverse analysis traces the steps of direct
analysis in reverse. We examined the inverse analysis method divided step by step as follows:

(a) Estimation of acoustic impedance Z5; from acoustic impedance Z{;.

(Z55 and Z;, :acoustic impedance viewed from the left end of the specimen and from the left end
of the whole system)

(b) Estimation of the characteristic impedance Zgp of the specimen from the acoustic impedance
Zy3

(c) Estimation of viscoelasticity (E’,tand) of the specimen from the characteristic impedance Zgp
(See Appendix A)

In this section, each inversion step is confirmed via numerical calculation. We start with a simple
procedure and confirm the validity via numerical calculation.

2.1 Relationship between Complex Wave Number, Viscoelasticity, and Characteristic
Impedance -Numerical Calculation of the Direct and Inverse Analysis -

For a longitudinal wave propagating in a viscoelastic rod, there are simple one-to-one relations
between complex elastic modulus, complex wave number, and characteristic impedance (See
Appendix B).

Figure 2 shows the relationship between viscoelasticity and complex wave number. In Fig.2,
numerical examples are shown as “(Direct)” and “(Inverse).” In the direct calculation, when the
storage modulus and the loss factor in the left figures are given, the complex wave number (real
wavenumber and attenuation constant) is obtained using the direct formulas. On the other hand, in
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the inverse calculation, the viscoelastic data are calculated from the complex wave number using the
inverse formulas. In the graph on the left side of the complex modulus, the inverse result is consistent
with the direct result. Therefore, the inversion formulas can be considered valid. The formulas of the
complex wave number from viscoelasticity and the formulas for their inversion are shown below Fig.
2.

(*) Similar relations hold for the flexural waves propagating in the viscoelastic beams and plates. We
would like to discuss them on another occasion.
Storage modulus
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Fig.2. Direct and inverse calculations (Viscoelasticity to complex wave number)

[Formulas used in Fig.2]
Direct formulas (Egs.(5) and (6))

1

_ 1z 1 1 2
B0) = o 55| [ * Trara] + - (Real wave number [1/m)
1 1
_ o1z 1 1 2 .
aw(w) =w [25' (w)] ranze)i2 ~ 1rtan? 5] (Attenuation constant [1/m])
Inverse formulas (Eqgs.(B2)) For details, see Appendix A in [4].
2, .2\2 11/2
tan§ = [(ﬁztzz) -1 , (Loss factor [-])
2 ) 2_,2
E =22_. L 2 B -a (Storage modulus [Pa])

T ez (rtanze)z . PP (griarye

In Fig. 3, on the one hand, when the complex wave number is given as shown in the graph on the left
side, the complex characteristic impedance of the material is calculated using the direct formulas. On
the other hand, using the inverse formulas, the complex wave number (real wave number and
attenuation constant) can be calculated from the complex characteristic impedance of the material
(inverse calculations). In the graph on the left side of the complex wave number, the inverse result is
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consistent with the direct result. Therefore, the inversion formulas can be considered valid. The
formulas for calculating the characteristic impedance from the complex wave number used in Fig. 3
and the formulas for their inversion are shown below the figure.

By continuing to use the formulas at the bottom of Fig. 2 and Fig. 3, it is possible to perform the
direct and inverse calculations between viscoelasticity (E',tand) and complex characteristic
impedance Zgp.

500 Real wave number [Direct]
' * *
— 450 B, a) — (Re(Zsp);Im(Zsp))
£ o0
S 40 . . . )
= a0 | Zép:Characteristicimpedance [P, - s/m]
£ .
E 300 - Direct
£ 250 | —
§ 200 -~ ——Inverse | €
3 150 - + Direct nverse
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so | — 2125 25 E
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Frequency [kHz] w2115 - e\=sp )1 o
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— * |
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Fig.3. Direct and inverse calculations (Complex wave number to characteristic impedance)

[Formulas used in Fig.3]
Direct formulas (Egs.(B3)) For details, see Appendix A in [4].

Zsp(w) = R,(Zsp) + il,,(Zsp), (Characteristic impedance of the specimen [P, s/m])
where
Re(ZSP) = —ﬁpzi)az :Im(ZSP) = _ﬁpzizz i =v-1

Inverse formulas (Eqs.(B4)) For details, see Appendix A in [4].
B*=pB —ia, (Complex wave number [1/m])
where

B= 1 pw Im(Zsp)/Re(Zsp) ~ pw

1+ UnZip) /Re i) 2 RoZip) "~ 1+ Un(Zip)/Re(Zip)? Ro(Zip)

2.2 Estimation of the Acoustic Impedance Z;5 as Viewed from the Left Side of the Specimen
from the Acoustic Impedance Z;,,

When the acoustic impedance Z;,; of the whole system as viewed from the left end of Fig. 1 is
obtained from the measurement, the acoustic impedance Z;; as viewed from the left end of the
specimen is obtained as follows:
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* (Z;t/ZSteel )+ I tan (a)LSteel /CSteeI)
Z23 - ZSteeI o . (7)
l+ I(Ztot /Z Steel )tan (a)LSteel /CSteeI)
(See Eqg. (A1_2) in Appendix A)
The relationship between Z;,, and Z; is shown in Fig. 4. As it is a simple relation, we do not
show the numerical confirmation of Eq. (7) here.

Z23* and Ztot* (absolute value) Z23* and Ztot* (phase)
'E' 6.0 100.0
- 80.0
o —Abs(Z23
é‘f 5.0 ( ) 60.0
S ——Abs(Ztot) 40.0
X 4.0
Z = 20.0
3 3.0 3 00
e : - ——Phase(223)
= @-20.0 )
é‘ 2.0 £.400 ——Phase(Ztot)
S 10 -60.0
B -80.0
3 0.0 -100.0
< 0.0 2.0 0.0 0.5 1.0 15 2.0

5 1.0 1.
Frequency [kHz] Frequency [kHz]

(For the physical properties and dimensions, see Appendix C.)
Fig.4 Acoustic impedance of the whole system and the specimen
(Concern)
When Z{,. and Z5; are expressed in the following form, it will be necessary to pay attention
to the effect of poles:
oo a
cZ, +d +% . 8
;( k =k k Zk _ka ( )
2.3 Estimation of the Characteristic Impedance Zgp of the Specimen from the Acoustic
Impedance Z33
When the acoustic impedance Z;; is given, the characteristic impedance Zg, of the specimen
is calculated by solving the quadratic equation (9a) of the complex coefficients. (See Eq.(A2_2) in
Appendix A.) However, from the mechanical point of view, the real part of Zg, is positive and the
imaginary part is nonnegative (Eg. (9b)). Furthermore, the coefficient C; in Eq. (9a) is a function
of the real wave number 3 and the attenuation constant a in the specimen. 3 and o can be expressed
as functions of Zg, (Eq. (10)). Therefore, the iterative procedure through the under relaxation
method was applied to the numerical calculation of Egs. (9) to (10).
In the current inverse calculation, this procedure is the most complicated one.
(Quadratic equation of the complex coefficient on Zgp)

(25 ) -cizi-c; =0,
where

. e\sinh(2als, )—isin(28L,)
2" cosh(2ale, )—cos(2 AL )

*

C = (Z;‘ ~Zy, )COth[(a +if)Lep ]= (Z

C, =252,

(9a)
Z3y, - The acoustic impedance viewed from the left end of the steel rod on the right side in Fig. 1
[ Pa:s/m ]
Re(z3)>0,1m(z% )= 0 (9b)
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1 po Im(Z3, ) Re(Zse)  poo
p= - % e a= " T ; (10)
1+[im(z;, ) Re(z5, )| Relzee)” 1+ [im(z, ) Relzsp | Relse)

(i.e., the real wave number and attenuation constant in the specimen, respectively)

(See Appendix B)
An outline of the direct and inverse calculations is shown in Fig. 5. Numerical examples are also
attached to the figure. In Fig. 5(b), the characteristic impedances Zg, from the direct and inverse
calculations are consistent with each other. Furthermore,in Fig.5(a), the complex wave number
B* obtained through the iterative procedure is identical to that obtained from direct calculation. In

Fig. 5, the lower limit of the frequency was set to 400 Hz. The calculation procedure of Fig. 5 is
summarized below the figure.

[Direct | Characteristic impedance Zsp —_
B - Zip T 2.125 oi 25 R
, : <
T Complex wave number 8* = § — i = 3 L0 @ » Direct P
= seo 5.0 E [ — nverse 23 f
= :Di ) al
o 0 @ « Direct & e = w2115 X 5
- 400 —— .Inverse 40 T [=] 2.1 —
2L 350 : X 5 ; 2.110 Real part R.(Zsp) X,
€ 300 ~ Realwave Attenuation | 30 45 Rl . 19 ©
number g 0 + ¥ Imaginary . kS
3 50 constant a 25 € 2.105 * o
c Q @ w part L (Zp)
o 200 <:| 20 O e " 17 2
& 150 15 § T 2100 . S
2 j00 10 = [Inverse] x =
e 8 S pez 2,095 15 @
o 0 e ¥ 0.0 05 1.0 15 2.0 S
o oo o0 @ ) ’ ’ ) ' -
0.0 05 1.0 15 2.0 =z Frequency [kHz]
Frequency [kHz] (b) Characteristic impedance
(a) Complex wave number [Direct | [Inverse]
Lsp = L33 Lsp < Z33
£ Acoustic impedance Z;;
=
as 5.0
°
4,
= 0 —Real
X 30 —Imaginary
S 2.0
§ 1.0
§ o0 y -
g -10 \
E
o 20
g -3.0
0.0 0.5 1.0 15 2.0
&

Frequency [kHz]
(c) Acoustic impedance

Fig.5. Direct and inverse calculations (Characteristic impedance Zg, to the acoustic
impedance Z;;, Frequency > 400 Hz, Specimen: VC6400 in [1] )
(See Egs. (9) and (10) and Egs. (A2_3)—(A2_7) in Appendix A)

[Formulas used in Fig.5]

Direct calculations in Fig.5 (Zsp — Z53) (See Eq.(7) and Appendix B.)
_ g coth[(a +if)Lsp] + (Zsp/Z3)
SP 1+ (Z2p/Z3)coth[(a + if)Lsp]
(Acoustic impedance as viewed from the left end of the specimen [P, s/m])
where
Zip = pw (B +ia)/(B? + a?)  (Characteristic impedance of the specimen[P, s/m]),

*
Z23
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1 1

_ p ]2 1 1 2
p=ow [ZE’(w)] [(1+tan2 812 " 1+tan? 6] (Real wave number [1/m]),
1

1
p |z 1 1 2 .
zE'<w>] [ e 2 Traw 5] (Attenuation constant [1/m])

=l

Inverse (iterative) calculations in Fig.5 (Z;5 — Zsp) (See Egs.(9) and Appendix A.)
The quadratic equation (9a) is solved for the characteristic impedance Zgp .

(Zgp)? — C{Zsp — €5 = 0,Re(Z5p) > 0,Im(Z5p) 2 0 ,
where

* * * Sinh(zaLsp)—iSin(ZﬁLgp) * * *

1= (223 - Z3b) cosh(2aLgp)—cos(2BLsp) ' C2 = Z33Z3p

The real wave number B and the attenuation constant o are calculated as functions of Zg, as
follows.

B:

1 . _Pw — Im(zgp)/Re(Zsp)  pw
1+[tm(z35p)/Re(23p)]" Re(Z5p) 1+[mm(z%p)/Re(z5p)]> Re(Zsp)

Subsequently, we set the lower limit of the frequency in the inverse calculation to 200 Hz. At this
time, the inverse analysis result of the characteristic impedance and the complex wave number
diverged in the low-frequency region around 200 Hz (Fig. 6 and Fig. 7). The cause of divergence is
still under consideration. We need to improve the iterative procedure and determine the convergence
radius criteria.

Characteristic impedance (Real part) Characteristic impedance (Imaginary part)

8 3.0 8 ? 1.2
— :
=5 0 g
T 26 2 s .

8
2o 24 S os
S 22 o e

(=) 1-.-4-4-0-»—0—4—4-——0—0—0—“ S -
5] " p— .
2= 20 2% 0.6 + Direct
25 18 + Direct =Ry —Inverse
S 72 16 —Inverse 2 =04
“; * A . g IN
g N 14 = F
5 ] : ()

1.0 0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Frequency [kHz] Frequency [kHz]

Fig.6. Divergence of the inverse calculation at the low frequency near 200 Hz
- Characteristic impedance -
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_ 50.0 g 5.0
g 450 o 45
= 400 3 4.0
@ 350 2 35
= ©
2 300 -é 3.0
g 25.0 —Inverse S 2.5
S 200 + Direct 5 2.0 —lInverse
& 15.0 B 15 + Direct
3
; 10.0 £ 1.0
0.5
2 50 ﬁ
0.0 0.0
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Fig. 7 Divergence of the inverse calculation at the low frequency near 200 Hz
- Complex wave number -

3. Conclusion

The acoustic impedance of the whole system can be calculated from the frequency response
function (acceptance X / F). We investigate the inverse method for obtaining viscoelasticity when the
acoustic impedance of the system is obtained. Each step of the inverse analysis traces the steps of
direct analysis in reverse. We confirmed that the inversion results for each step reproduced the
conditions of the direct calculations.

4. Future Tasks

In the inverse estimation of the characteristic impedance Zgp from the acoustic impedance
Z54 of the specimen, there was a divergence for the low-frequency range (200 Hz or less). We will
develop a more stable inverse procedure for a wider frequency range.

Appendix A. Estimation of Viscoelasticity using Acoustic Impedance
In the case of a direct problem, the acoustic impedance of the whole system can be calculated from
the viscoelastic data of the specimen through the following procedure.

(1) Viscoelasticity(E', tand) — (2) Characteristic impedance of the specimen Zsp — (3) Acoustic

impedance after the specimen Z,3s~ — (4) Acoustic impedance of the whole system Ziot~

If the acoustic impedance Zw: of the whole system is obtained from the frequency response
function (such as acceptance X / F), can we identify viscoelasticity (E’,tand)? (This is the inverse
problem.) Here, we consider the inverse analysis method step by step.

Al. Estimation of the Acoustic Impedance Zx3 ~ after the specimen from the Acoustic

Impedance Zwt”~ of the Whole Sistem
Nylon string

L" I-" L:
Inlet 0
Acoustic
impedance (l)StgeI (2)Specimen (3)Stgel
. (elastic) (viscoelastic) | (elastic) 7 =7
Zmr = (p/u)ﬂ:o
R e L

| |

Characteristic Acousticimpedance Z*,;
impedance Z,

Fig.Al. Acoustic impedance of the system

First, the acoustic impedance Z;,. of the whole system as viewed from the left end of Fig. Al can
be expressed as follows (See Eq. (B1_7) in [4]):
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*

Ztot (Z ;3 /Z Steel )+ I tan (a)LSteeI /CSteeI )

ZSteeI 1 + I(Z ;3 /Z Steel )tan (a)LSteel /CSteeI ) ’

where
-~ 1 -1
B o, 2 1 1 2
'B(w)_w_ZE’(w)_ rtnts)’ 1+wn’s ]
- _1n -1
B p |2 1 B 1 2
a(w)_w_ZE’(a))_ (Q+tan?of? Lrtan’s|

ZSteeI = pSteeICSteeI !

E ee 1-v ee
CStee| =\/ St |( St |)

Psteel (1 Vel )(1 - 2VSteeI )

(A1 1)
Eqg. (A1_1) can be solved for Z;; as follows:
Z;s — ZSteeI (Zt?t/%Steel )+ I tan (a)LSteeI /CSteeI) . (A1_2)
1+ I(ztot /Z Steel )tan (a)LSteeI /CSteeI)

Thus, the acoustic impedance Z5; downstream from the specimen can be estimated using the
measured value  Z;,;.

A2. Estimation of the Characteristic Impedance Zg, of the Specimen from the Acoustic
Impedance Z;; Downstream from the Specimen

We apply Eqg. (B1_7) in [4] (acoustic impedance of series rod) to the specimen (2) in Fig. Al. In
this case, the acoustic impedance Z5; as viewed from the left side of the specimen can be expressed
as follows:

*

. cothf(a+iB)Ls |+ éi"
23 _ 3b ,i:\/—_l , (A2_1a)

*

Zse 1+Z—i'°coth[(a +if)Lep ]
Zsb
where
Z;b = iZSteel tan (a)LSteeI / CSteel) (Az_lb)

Z3y, 1S the acoustic impedance viewed from the left end of the steel rod (3) in Fig. Al (See Eq.
(C2_1) in [4]).

Eqg. (A2_1 a) can be rewritten as follows:
(Z;P )2 - (Zza - Z;b )COth[(a + iﬂ)'—sp]' ng - ZZsz;b =0 (A2_2)
Assuming that the real wave number [ and the attenuation constant o are known quantities, the above
equation is a quadratic equation (A2_3) of the complex coefficients with respectto  Zgp.

e

where

r \sinh (2alg, )—isin(2 AL, ) (A2_3)
2 "%/ cosh(2ale, )—cos(2Lgp )’

C/ = (Z;S ~Zy, )COth[(a +if)Lep = (Z

C, =257y,
For the second equal sign of the expression on Cj , see (Note Al).
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In Eq. (A2_3), the coefficient C] is a function of the unknown complex wave number B* =g —
i . When the characteristic impedance Zgp is obtained from Eq. (A2_3), the real wave number 3
and the attenuation constant o can be calculated using Eq. (A2_8) described later. Therefore, iterative
calculationson Zgp , B, and a are required.

If we regard Eq. (A2_3) as a quadratic equation of complex coefficients for Zgp , its formal
solution can be expressed as follows, as in the case of quadratic equations of real coefficients:

* 1 * *
Z, =§[Cl +,/C; ]
where (A2_4)
c;=(cf +ac;
However, care must be taken in handling the square root in Eq. (A2 _4) for complex coefficients. If

the coefficient C3 is expressed in polar form as shown in Eg. (A2 _5), its square root can be
expressed as Eq. (A2_6 a).

C; =(c; ¥ +4c; =r,exp[i(6, + 2mx)],r, >0,m=0.1,2--- (A2_5)
Square Root of C3
(C; )Uz =r)? exp{i(% + mnﬂ (A2_6a)
Further,
—(c3)? = exp{i[% +(m +1)7zﬂ : (A2_6b)

From the mechanical meaning of the characteristic impedance, we must choose the roots that satisfy
the following condition (Eq. (A2_7)):
Re(z3)>0,1m(z5 )= 0 (A2_7)

For calculation on Excel VBA, argument 65 and 6; +m of C; are set as phase C 3 (1) and
phase C 3 (2) as shown in Table A 1. Subsequently, we represent candidates of complex
characteristic impedance Zgp for two arguments as follows:

ReZspi (k) +i-ImZgp; (k) ,k =1,2,34,i =+/—1
We searched for the solutions satisfying Eqg. (A2_7) from among these.

Table. Al. Procedure for obtaining a characteristic impedance satisfying the condition (A2_7)
(Excel VBA)
AL2 =2 * alphZ23I(jfreq) * Lsp: BL2 = 2 * betaZ23I(jfreq) * Lsp
eAL = Exp(AL2): snhAL=0.5* (eAL - 1/eAL): cshAL=0.5* (eAL+ 1/eAL)
snBL = Sin(BL2): csBL = Cos(BL2)
'Cls Cj
Ar = ReZ23A(jfreq) - ReZ3(jfreq): Ai = ImZ23A(jfreq) - ImZ3(jfreq)
Br = snhAL / (cshAL - csBL): Bi = -snBL / (cshAL - csBL)
Re_AB = Ar * Br - Ai * Bi: Im_AB = Ai * Br + Ar * Bi ' Complex A*B
ReCoef(1) = Re_AB: ImCoef(1) = Im_AB
'C2s C;
Ar = ReZ23A(jfreq): Ai = ImZ23A(jfreq)
Br = ReZ3(jfreq): Bi = ImZ3(jfreq)
Re_AB = Ar * Br - Ai * Bi: Im_AB = Ai * Br + Ar * Bi ' Complex A*B
ReCoef(2) = Re_AB: ImCoef(2) = Im_AB
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'C3s=C1s"2+4*C2s C;
Ar = ReCoef(1): Ai = ImCoef(1): Br = Ar: Bi = Ai
Re_AB = Ar * Br - Ai * Bi: Im_AB = Ai * Br + Ar * Bi ' Complex A*B
ReCoef(3) = Re_AB + 4 * ReCoef(2): ImCoef(3) = Im_AB + 4 * ImCoef(2)
" abs(C3s) and Phase(C3s)
absC3 = Sqr(ReCoef(3) * 2 + ImCoef(3) ~ 2)
phaseC3(1) = Application.WorksheetFunction.Atan2(ReCoef(3), ImCoef(3))
phaseC3(2) = phaseC3(1) + 2 * pi
'C4s & C5s=sqr(C3s) (Complex) <(C})1/2
absC4 = Sqr(absC3)
ReCoef(4) = absC4 * Cos(phaseC3(1) / 2): ImCoef(4) = absC4 * Sin(phaseC3(1) / 2)
ReCoef(5) = absC4 * Cos(phaseC3(2) / 2): ImCoef(5) = absC4 * Sin(phaseC3(2) / 2)
'Candidates of Zsp
ReZspl(1) = 0.5 * (ReCoef(1) + ReCoef(4)): ImZspl(1) = 0.5 * (ImCoef(1) + ImCoef(4))
ReZspl(2) = 0.5 * (ReCoef(1) + ReCoef(5)): ImZspl(2) = 0.5 * (ImCoef(1) + ImCoef(5))
ReZspl(3) = 0.5 * (ReCoef(1) - ReCoef(4)): ImZspl(3) = 0.5 * (ImCoef(1) - ImCoef(4))
ReZspl(4) = 0.5 * (ReCoef(1) - ReCoef(5)): ImZspl(4) = 0.5 * (ImCoef(1) - ImCoef(5))
'Searching for ReZspl(k)>0 and ImZsp(k)>=0
iSol = 0:iPsol =0
Fori=1To 4 ‘Searching
ReZsplP(i) = 0: ImZsplIP(i) = 0 'Initial value ReZsp<=0 or ImZsp<0
If ReZspl(i) >0 And ImZspl(i) >= 0 Then ™*
iPsol = i:iSol = iSol + 1 “iPsol :Candidate Number. Satisfying (A2_7)
ReZsplIP(iSol) = ReZspl(iPsol): ImZspIP(iSol) = ImZspl(iPsol) ' Store variables that
satisfy Re> 0, Im>=0in an array
ReZspNew = ReZsplP(iSol): ImZspNew = ImZspIP(iSol) * Variables that satisfy Re> 0, Im>
=0
End If ** ReZspl(i) >0 And ImZspl(i) >=0*
Nexti  ‘Searching
nPsol =iSol “nPsol : Number of nonnegative solutions

According to the fundamental theorem of algebra, the quadratic equation of the complex
coefficients has two solutions in the complex number.

Let us assume that one complex number Zg, such that the real part is not positive or the
imaginary part is negative is obtained. At this time, if Zg, that satisfies the condition (A2_7) is
obtained, this is the only solution satisfying the condition (A2 _7).

Once the characteristic impedance Zg, of the specimen is obtained, the complex wave
number B* = B —ia in the specimen can be obtained as follows.

Real Wave Number and Attenuation Constant of Longitudinal Wave in the Specimen
- 1 PO

1+[Im(z;, )/Re(z5, | RelZes)’

Im(z3,)Relzsp)  po

1+[im(z;, )/Re(z3 | Relzss)

(See Egs.(B3) and (B4) in Appendix B. Here, Z¢ = Zsp . )

(A2_8)

a =

(Iterative Calculation)
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In the quadratic equation (A2_3) of complex coefficients, the coefficient C; is a function of the
unknown quantities (the real wave number [ and the attenuation constant o). Therefore, it is
necessary to perform iterative calculation to simultaneously obtain Zg, , real wave number f, and
attenuation constant a.

We set Re(Zsp)/Z, and Im(Zgp)/Re(Zgp) for the starting frequency as the initial value. For
example, at 1600 Hz, Re(Z$p)/Z, is approximately 300 to 500 and Im(Z&p)/Re(Zsp) is
approximately 0.1.

Subsequently, we updated the real part and the imaginary part of the characteristic impedance to
Re(Z¥"*) and Im(Z3EW*) using equations (A2_4) to (A2_8). Subsequently, the following
relaxation calculation was applied to these updated values:

(AL)gezsp = fn(Re(ZSI'VIEW*) + &) = h(R.(Zsp) + €),

(AL)ImZSP = fn(lm(Z_IGVPeW*) + S) - fn(lm(Z;P) + 5);

Re(Zgp) < Re(Zgp) * exp(Reax - (AL)pezsp)

Im(Zgp) < Im(Zgp) - eXP(Relax ) (AL)ImZSP) ) (A2_99)

B= 1 P
1+[Im(z2, )/Re(z3, || RelZes)'
Im(z3, ) Re(zss)  po
1+[im(z;, )/Re(z3, | RelZss)
0 < R.iqx <1 Relaxation parameter, 0 < & <« 1 Positive small number such as 10710

(A2_9b)

o=

N

The numerical calculation procedure in this section is summarized in Fig. A2.

The acousticimpedance Z;,;(w) is given experimentally.

y

| The acousticimpedance Z;5(w) is calculated using Eq.(A1_2). ‘

‘ Assume the value of the acousticimpedance Zsp. ‘

Iterative calculation
Rar———————————— ‘Jr ------------------------------------------------------ o
e Calculate the complex wave number *(= 8 — ia) using Egs. (A2 - 8). \\‘

Calculate the coefficients Cyand C; of the quadratic equation (A2_3) of the
complex coefficient.
¥

Using the expressions (A 2_4) to (A 2_7), obtain the characteristicimpedance
ZNeW* satisfying the condition (A 2_7). (Here, ZX¢" * is the new value of Z$p.)

|
To prevent divergence, update the value of Z¢p using the under relaxation method
(Eg. (A2 _9b)).

e

- -

No

N ————

Converged?

~ -
_________________________________________________________________________________

Yes

Update w.

Fig. A2. Flow chart of the procedure in this section
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(Note A1) Derivation of the second side of Eq.(A2 _3)

coth[(a +ig)L]

_explla+ip)L]+exp[-(a+ip)L] @
expl(ar +ip)L]-exp[-(a +ip)L]

_ [exp(at )+ exp(—at )Jcos(AL)+i[exp(al) - exp(— ol )Jsin (L)
[exp(al)—exp(—alL)|cos(AL)+i[exp(al )+ exp(—aL )jsin(AL)

Multiply the numerator and denominator of the above equation by the following factor F, which is
the conjugate complex number of the denominator.

F = [exp(ad)—exp(~al )Joos( AL )i[exp(ad )+ exp(~aL )Jsin(AL)
(Numerator) X F

{ [exp(aL)+exp(~ aL )]cos(AL )+ i[exp(alL )—exp(— ol )]sin(AL) }
x{ [exp(aL)—exp(~ aL )|cos(AL )~ ilexp(al ) +exp(~aL )Jsin(AL) }
= [exp(al )+ exp(- aL )[exp(al )—exp(— al )|cos? (AL )
+[exp(al )—exp(— oL )[exp(al ) + exp(- oL )Jsin?(AL)
+i[exp(al)—exp(-aL )J sin(AL)cos(AL)
—i[exp(aL)+exp(—aL ) sin(AL)cos(AL)
= [exp(2aL )—exp(- 2al )]+ i[- 4sin( AL )cos(AL)]
= 2sinh(2al)-2isin(24L)
(Denominator) X F
[exp(aL )—exp(— aL )] cos?(BL)+ [exp(al )+ exp(— aL )f sin?(AL)
= [exp(2aL )+ exp(— 2oL )— 2]cos? (BL) + [exp(2al )+ exp(— 2oL )+ 2]sin * (AL )
=2cosh(2al)-2cos(24L)
Therefore, the fO”Os\,Ii\:: E?Zroe;ll_a)ti_oir; iis((;l;ii)ned:
coth[(a +ip)L]= cosh2al)_cos2 ) (b)

Appendix B. Relation between the Characteristic Impedance, Complex Wave Number, and
Viscoelasticity

We present the relation between the characteristic impedance, complex wave number, and
viscoelasticity derived in the previous studies [3],[4].

[Relation between the Viscoelasticity and Complex Wave Number]
(Direct)
Real Wave Number

1

B p |2 1 1 2
Aloo)= W{ZE'(WJ {(1+ tan? 5)]/2 Tlrtn?s (B12)

Attenuation Constant (factor)
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1

o 1 1 P
alo)=w — Blb
@) [ZE'(CO)} {(1+tan25)]/2 1+tan25} (B1D)
U d
(Inverse)
Loss Tangent (factor) and Storage Modulus
12
2 22
tan5:{[’32+a2J ] )
o (82)
EI pa)z 1 _ 0)2 ﬂz _az

T prra? .(1+tan2§)1/2 -7 (ﬁ2+a2)2

[Relation between the Characteristic Impedance and Complex Wave Number]
(Direct)
Complex Characteristic Impedance
Z:(0)=Rez5 )+iim(z5 ),

where (B3)
. pof . poa .
Re(z3, )= yirwet Im(z3, )= vl J-1
—
(Inverse)
Real Wave Number and Attenuation Constant
1 @
= 2

1+ [im(z;, ) Re(zz, )f Relz3p)’
Im(zZs,)Re(zs)  poo
1+[im(z, ) Re(z:, )} RelZes)

(B4)

o=

Appendix C. Physical Properties and Dimensions

The physical properties and dimensions used in this study are listed in Table C1. The data in this
table are the values described in the paper of Policarpo et al. [1]. Here, the storage modulus and the
loss factor are the results estimated via modal-based inverse analysis. The two frequencies
correspond to the two natural frequencies obtained by changing the lengths of the steel rods at both
ends. We used the value obtained via linear interpolation of the data listed in the table as a relation
between viscoelasticity and frequency.
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Table C1. Properties and size of the specimen (Specimen A)
[ Conditions ]

(Steel)
Psteel Mass density [kg/m®] 7640
Esteel Young's modulus [GPal 205
Vgreel Poisson’s ratio [-] 0|(x1)
Csreel Phase velocity [m/s] 5180.0
Zsteel Characteristic impedance [Pa- s/m ] 3.958E+07
(Specimen) Cork A (*2)
| p Mass density [kg/m’] | 893.0 |
( Viscoelasticity vs. frequency ) (*3)
E' tand
Frequency (Hz) Storage modulus [ MPa ] Loss factor [ — ]
159.7 48.8 0.155
1124.0 49.5 0.187
[ Dimension ]
(Length)
Steel Lsteer [ mm] 20.5
Specimen Lsp [mm] 12.8
Total Ltot = L5p + ZLStggl [mm] 53.8
(Cross sectional area)
Arealm?] | 4.0E-03|

(*1) Varied in the range 0 < Vgeer < 0.5
(*2) and (*3): Policarpo's data (for their cork VC6400)
(*3): Policarpo’s modal inversion results
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