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Abstract. We had derived the explicit analytical expression of the complex wave number of a 

longitudinal wave in a viscoelastic rod and a flexural wave in a viscoelastic beam. In this study, we 

deal with the longitudinal waves in viscoelastic rods such as cork. This paper focuses on the inverse 

analysis method to identify the viscoelasticity of a specimen using the acoustic impedance of a 

viscoelastic rod obtained from the experiment. This method consists of inverse calculations for each 

step of the physical model. With our simple inverse formulas, it is possible to obtain the complex 

wave number from the characteristic impedance. It is also possible to identify viscoelasticity from 

the complex wave number. Furthermore, we developed an inverse calculation method to identify the 

characteristic impedance of the specimen from the acoustic impedance after the specimen. We 

confirmed that the conditions of direct analysis are reproduced by inverse analysis. 

  

1. Introduction 

Among shock-absorbing and sound-absorbing materials, cork behaves as a homogeneous 

viscoelastic body without breathability. Policarpo et al. [1] hammer-excited a cork specimen 

sandwiched between steel rods on both sides. They identified the storage modulus and loss factor of 

the cork specimen for each eigenmode from the frequency response function. 

 We have studied stress waves propagating in viscoelastic rods, beams, and plates [3], [4]. In the 

previous study [4], we calculated the acoustic impedance of a cork rod using our formulas of the 

complex wave number. The calculated results were validated via a comparison with the data of 

Policarpo et al. [1].  

 Many studies have identified the physical properties of a specimen from acoustic impedance. 

However, many of them are problems of mathematical scattering. Mouhtadi et al. [2] irradiated 

ultrasonic waves onto plates such as polyethylene to identify the mass density, elastic modulus of the 

specimen, and attenuation constants in the specimen and air. In their study, the acoustic impedance 

between the transmitter and the receiver was used for identifying the physical properties. However, 

they assumed that the attenuation constants in the material and in air are proportional to the first and 

second powers of the frequency, respectively. 

Furthermore, we have studied an inverse analysis method for determining viscoelasticity from the 

acoustic impedance of a viscoelastic rod. Our study aims at low frequencies below several kilohertz. 

We use the explicit formulas expressing the complex wave number (real wave number and 

attenuation constant) for given viscoelasticity (storage modulus and loss factor) [3]. Our formulas are 

based on the wave propagation in viscoelastic rods and plates, and we do not assume linear and 
quadratic frequency dependence. 
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 In this paper, we show the inverse analysis method for obtaining viscoelasticity when the acoustic 

impedance of the system is obtained. Each step of the inverse analysis traces the steps of direct 

analysis in reverse. 

 
Fig.1. Experimental setup of Policarpo et al. [1] 

 
2. Applicability to the Inverse Calculations - Estimation of Viscoelasticity from Acoustic 

Impedance 

In our previous study [4], we calculated the complex wave number (real wave number and 

attenuation constant (factor)) using the viscoelastic data estimated by Policarpo et al.[1] 

Subsequently, we calculated the acoustic impedance from the complex wave number.  

The acoustic impedance of the whole system Ztot
∗   in Fig. 1 can be calculated from the frequency 

response function of Policarpo et al. [4]   

For Fig. 1, the acoustic impedance of the whole system and the specimen can be expressed as 

follows [4]:  
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where 

 ω : Radial frequency [rad/s], ρ : mass density of the specimen [𝑘𝑔 𝑚3⁄ ],  
β and α : Real wave number and attenuation constant in the specimen, respectively  

(Eqs. (5) and (6)),  

Z23  
∗ : Acoustic impedance as viewed from the left end of the specimen [𝑃𝑎 ∙ 𝑠 𝑚⁄ ], 
*

SPZ : Characteristic impedance of the specimen [𝑃𝑎 ∙ 𝑠 𝑚⁄ ],  
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SPL : Length of the specimen [m], 

SteelZ ：Characteristic impedance of the steel rod [𝑃𝑎 ∙ 𝑠 𝑚⁄ ], 

Steelc : Phase velocity in steel [m/s], ρSteel : mass density of steel [𝑘𝑔 𝑚3⁄ ], 

Steel : Poisson’s ratio of steel [-], :SteelL Length of the steel rod [m], 

          

 SteelSteelSteelb cLiZZZ tan*

3

*

3                                              (3)  

  : Acoustic impedance viewed from the left end of the rightmost steel rod [𝑃𝑎 ∙ 𝑠 𝑚⁄ ],              

Relations between hyperbolic functions 

             SPSPSPSPSP LLLiLLi  2cos2cosh2sin2sinhcoth  .     (4)  
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 Attenuation Constant [1/m] 

 
   

2

1

2212

2

1

tan1

1

tan1

1

2 
































E
,         (6) 

where 

 E′(𝜔): Storage modulus of the specimen [Pa], 

 tanδ: loss tangent (loss factor) of the specimen[-]. 
  

In this study, we investigate the inverse method for obtaining viscoelasticity when the acoustic 

impedance of the system is obtained. Each step of the inverse analysis traces the steps of direct 

analysis in reverse. We examined the inverse analysis method divided step by step as follows: 

(a) Estimation of acoustic impedance Z23
∗   from acoustic impedance Ztot

∗ .  

 (Z23
∗  and Ztot

∗  : acoustic impedance viewed from the left end of the specimen and from the left end 

of the whole system) 

(b) Estimation of the characteristic impedance ZSP
∗  of the specimen from the acoustic impedance 

Z23
∗   

(c) Estimation of viscoelasticity (𝐸′, 𝑡𝑎𝑛𝛿) of the specimen from the characteristic impedance ZSP
∗   

(See Appendix A) 

 

In this section, each inversion step is confirmed via numerical calculation. We start with a simple 

procedure and confirm the validity via numerical calculation. 

  

 2.1 Relationship between Complex Wave Number, Viscoelasticity, and Characteristic 

Impedance -Numerical Calculation of the Direct and Inverse Analysis -  

 For a longitudinal wave propagating in a viscoelastic rod, there are simple one-to-one relations 

between complex elastic modulus, complex wave number, and characteristic impedance (See 

Appendix B). 

 Figure 2 shows the relationship between viscoelasticity and complex wave number. In Fig.2, 

numerical examples are shown as “(Direct)” and “(Inverse).” In the direct calculation, when the 

storage modulus and the loss factor in the left figures are given, the complex wave number (real 

wavenumber and attenuation constant) is obtained using the direct formulas. On the other hand, in 
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the inverse calculation, the viscoelastic data are calculated from the complex wave number using the 

inverse formulas. In the graph on the left side of the complex modulus, the inverse result is consistent 

with the direct result. Therefore, the inversion formulas can be considered valid. The formulas of the 

complex wave number from viscoelasticity and the formulas for their inversion are shown below Fig. 

2. 

 

(*) Similar relations hold for the flexural waves propagating in the viscoelastic beams and plates. We 

would like to discuss them on another occasion. 

  
  

Fig.2. Direct and inverse calculations (Viscoelasticity to complex wave number) 
 

[Formulas used in Fig.2] 
Direct formulas (Eqs.(5) and (6)) 
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Inverse formulas (Eqs.(B2)) For details, see Appendix A in [4]. 

tanδ = [(
𝛽2+𝛼2

𝛽2−𝛼2)
2

− 1]
1 2⁄

,                  (Loss factor [-]) 

  E′ =
𝜌𝜔2

𝛽2+𝛼2 ∙
1

(1+tan2 𝛿)1 2⁄ = 𝜌𝜔2 𝛽2−𝛼2

(𝛽2+𝛼2)2       (Storage modulus [Pa]) 

 
 

In Fig. 3, on the one hand, when the complex wave number is given as shown in the graph on the left 

side, the complex characteristic impedance of the material is calculated using the direct formulas. On 

the other hand, using the inverse formulas, the complex wave number (real wave number and 

attenuation constant) can be calculated from the complex characteristic impedance of the material 

(inverse calculations). In the graph on the left side of the complex wave number, the inverse result is 
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consistent with the direct result. Therefore, the inversion formulas can be considered valid. The 

formulas for calculating the characteristic impedance from the complex wave number used in Fig. 3 

and the formulas for their inversion are shown below the figure. 

 By continuing to use the formulas at the bottom of Fig. 2 and Fig. 3, it is possible to perform the 

direct and inverse calculations between viscoelasticity (𝐸′ , 𝑡𝑎𝑛𝛿)  and complex characteristic 

impedance ZSP
∗ . 

  
Fig.3. Direct and inverse calculations (Complex wave number to characteristic impedance)  

 
 [Formulas used in Fig.3]  
 Direct formulas (Eqs.(B3)) For details, see Appendix A in [4]. 

    ZSP
∗ (𝜔) = 𝑅𝑒(𝑍𝑆𝑃

∗ ) + 𝑖𝐼𝑚(𝑍𝑆𝑃
∗ ),        (Characteristic impedance of the specimen [𝑃𝑎 𝑠 𝑚⁄ ]) 

    where 

  𝑅𝑒(𝑍𝑆𝑃
∗ ) =

𝜌𝜔𝛽

𝛽2+𝛼2  , 𝐼𝑚(𝑍𝑆𝑃
∗ ) =

𝜌𝜔𝛼

𝛽2+𝛼2  , 𝑖 = √−1 

  Inverse formulas (Eqs.(B4)) For details, see Appendix A in [4]. 

    β∗ = 𝛽 − 𝑖𝛼 ,   (Complex wave number [1/m]) 

    where 
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 2.2 Estimation of the Acoustic Impedance 𝐙𝟐𝟑
∗   as Viewed from the Left Side of the Specimen 

from the Acoustic Impedance 𝐙𝐭𝐨𝐭
∗  

When the acoustic impedance Ztot
∗   of the whole system as viewed from the left end of Fig. 1 is 

obtained from the measurement, the acoustic impedance Z23
∗  as viewed from the left end of the 

specimen is obtained as follows: 
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(See Eq. (A1_2) in Appendix A) 

The relationship between Ztot
∗  and Z23

∗   is shown in Fig. 4. As it is a simple relation, we do not 
show the numerical confirmation of Eq. (7) here.  

 
(For the physical properties and dimensions, see Appendix C.) 

Fig.4 Acoustic impedance of the whole system and the specimen 
 (Concern) 

 When Ztot
∗  and  Z23

∗   are expressed in the following form, it will be necessary to pay attention 

to the effect of poles: 
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2.3 Estimation of the Characteristic Impedance 𝐙𝐒𝐏
∗   of the Specimen from the Acoustic 

Impedance  𝐙𝟐𝟑
∗   

When the acoustic impedance Z23
∗    is given, the characteristic impedance Zsp

∗   of the specimen 

is calculated by solving the quadratic equation (9a) of the complex coefficients. (See Eq.(A2_2) in 

Appendix A.) However, from the mechanical point of view, the real part of Zsp
∗     is positive and the 

imaginary part is nonnegative (Eq. (9b)). Furthermore, the coefficient C1   
∗ in Eq. (9a) is a function 

of the real wave number β and the attenuation constant α in the specimen. β and α can be expressed 

as functions of Zsp
∗  (Eq. (10)). Therefore, the iterative procedure through the under relaxation 

method was applied to the numerical calculation of Eqs. (9) to (10). 

In the current inverse calculation, this procedure is the most complicated one. 

  (Quadratic equation of the complex coefficient on ZSP
∗ ) 
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Z3b
∗ ：The acoustic impedance viewed from the left end of the steel rod on the right side in Fig. 1 

[ Pa ∙ s 𝑚⁄  ] 

    0Im,0Re **  SPSP ZZ                       (9b) 
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(i.e., the real wave number and attenuation constant in the specimen, respectively) 

(See Appendix B) 

An outline of the direct and inverse calculations is shown in Fig. 5. Numerical examples are also 

attached to the figure. In Fig. 5(b), the characteristic impedances Zsp
∗  from the direct and inverse 

calculations are consistent with each other. Furthermore,in Fig.5(a), the complex wave number 

β∗  obtained through the iterative procedure is identical to that obtained from direct calculation. In 
Fig. 5, the lower limit of the frequency was set to 400 Hz. The calculation procedure of Fig. 5 is 

summarized below the figure.  

 
 

Fig.5. Direct and inverse calculations (Characteristic impedance ZSP
∗  to the acoustic 

impedance Z23
∗ , Frequency ≥ 400 Hz, Specimen: VC6400 in [1] ) 

(See Eqs. (9) and (10) and Eqs. (A2_3)–(A2_7) in Appendix A) 
 

[Formulas used in Fig.5] 
 

Direct calculations in Fig.5 (ZSP
∗  → 𝑍23

∗ ) (See Eq.(7) and Appendix B.)    

 Z23
∗ = 𝑍𝑆𝑃

∗ ∙
𝑐𝑜𝑡ℎ[(𝛼 + 𝑖𝛽)𝐿𝑆𝑃] + (𝑍𝑆𝑃

∗ 𝑍3
∗⁄ )

1 + (𝑍𝑆𝑃
∗ 𝑍3

∗⁄ )𝑐𝑜𝑡ℎ[(𝛼 + 𝑖𝛽)𝐿𝑆𝑃]
 , 

  (Acoustic impedance as viewed from the left end of the specimen [𝑃𝑎 𝑠 𝑚⁄ ]) 
where 

 𝑍𝑆𝑃
∗ = 𝜌𝜔 (𝛽 + 𝑖𝛼) (𝛽2 + 𝛼2) ⁄   (Characteristic impedance of the specimen[𝑃𝑎 𝑠 𝑚⁄ ]), 
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Inverse (iterative) calculations in Fig.5 (𝑍23
∗  → ZSP

∗ ) (See Eqs.(9) and Appendix A.) 

The quadratic equation (9a) is solved for the characteristic impedance ZSP 
∗ . 
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The real wave number β and the attenuation constant α are calculated as functions of  Zsp
∗  as 

follows. 
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Subsequently, we set the lower limit of the frequency in the inverse calculation to 200 Hz. At this 

time, the inverse analysis result of the characteristic impedance and the complex wave number 

diverged in the low-frequency region around 200 Hz (Fig. 6 and Fig. 7). The cause of divergence is 

still under consideration. We need to improve the iterative procedure and determine the convergence 

radius criteria. 

 

 
 

Fig.6. Divergence of the inverse calculation at the low frequency near 200 Hz  
- Characteristic impedance  - 
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Fig. 7 Divergence of the inverse calculation at the low frequency near 200 Hz 
- Complex wave number  - 

3. Conclusion 

The acoustic impedance of the whole system can be calculated from the frequency response 

function (acceptance X / F). We investigate the inverse method for obtaining viscoelasticity when the 

acoustic impedance of the system is obtained. Each step of the inverse analysis traces the steps of 

direct analysis in reverse. We confirmed that the inversion results for each step reproduced the 

conditions of the direct calculations. 

 

4. Future Tasks 

 In the inverse estimation of the characteristic impedance ZSP
∗   from the acoustic impedance 

Z23
∗  of the specimen, there was a divergence for the low-frequency range (200 Hz or less). We will 

develop a more stable inverse procedure for a wider frequency range.    

 

Appendix A. Estimation of Viscoelasticity using Acoustic Impedance  

In the case of a direct problem, the acoustic impedance of the whole system can be calculated from 

the viscoelastic data of the specimen through the following procedure. 

(1) Viscoelasticity(𝐸′, 𝑡𝑎𝑛𝛿)→ (2) Characteristic impedance of the specimen ZSP
∗  → (3) Acoustic 

impedance after the specimen Z23
* → (4) Acoustic impedance of the whole system Ztot

*  

If the acoustic impedance Ztot
* of the whole system is obtained from the frequency response 

function (such as acceptance X / F), can we identify viscoelasticity (𝐸′ , 𝑡𝑎𝑛𝛿)?  (This is the inverse 
problem.) Here, we consider the inverse analysis method step by step. 

 

A1. Estimation of the Acoustic Impedance Z23 
* after the specimen from the Acoustic 

Impedance Ztot 
* of the Whole System  

 
Fig.A1. Acoustic impedance of the system 

 

First, the acoustic impedance  Ztot
∗   of the whole system as viewed from the left end of Fig. A1 can 

be expressed as follows (See Eq. (B1_7) in [4]): 
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                               (A1_1) 

Eq. (A1_1) can be solved for Z23
∗   as follows: 

   
   SteelSteelSteeltot
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*
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23
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
   .     (A1_2) 

Thus, the acoustic impedance Z23
∗   downstream from the specimen can be estimated using the 

measured value  Ztot
∗ . 

 

A2. Estimation of the Characteristic Impedance 𝐙𝐬𝐩
∗  of the Specimen from the Acoustic 

Impedance 𝐙𝟐𝟑
∗  Downstream from the Specimen  

We apply Eq. (B1_7) in [4] (acoustic impedance of series rod) to the specimen (2) in Fig. A1. In 

this case, the acoustic impedance Z23
∗  as viewed from the left side of the specimen can be expressed 

as follows: 
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  ,              (A2_1a)  

where 

  SteelSteelSteelb cLiZZ tan*

3             (A2_1b) 

Z3b
∗  is the acoustic impedance viewed from the left end of the steel rod (3) in Fig. A1 (See Eq. 

(C2_1) in [4]).  

Eq. (A2_1 a) can be rewritten as follows: 

       0coth *
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2*  bSPSPbSP ZZZLiZZZ                (A2_2) 

Assuming that the real wave number β and the attenuation constant α are known quantities, the above 

equation is a quadratic equation (A2_3) of the complex coefficients with respect to  ZSP
∗ . 
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           (A2_3)  

 For the second equal sign of the expression on C1
∗ , see (Note A1).    
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In Eq. (A2_3), the coefficient C1
∗  is a function of the unknown complex wave number β∗ = 𝛽 −

𝑖𝛼 . When the characteristic impedance ZSP
∗   is obtained from Eq. (A2_3), the real wave number β 

and the attenuation constant α can be calculated using Eq. (A2_8) described later. Therefore, iterative 

calculations on  ZSP
∗  , β, and α are required. 

If we regard Eq. (A2_3) as a quadratic equation of complex coefficients for  ZSP 
∗ , its formal 

solution can be expressed as follows, as in the case of quadratic equations of real coefficients: 

  

 
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*
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,
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CCZSP
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                      (A2_4) 

However, care must be taken in handling the square root in Eq. (A2 _4) for complex coefficients. If 

the coefficient C3
∗   is expressed in polar form as shown in Eq. (A2 _5), its square root can be 

expressed as Eq. (A2_6 a). 
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Further, 
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3 mirC   .      (A2_6b) 

From the mechanical meaning of the characteristic impedance, we must choose the roots that satisfy 

the following condition (Eq. (A2_7)): 

    0Im,0Re **  SPSP ZZ               (A2_7) 

 

For calculation on Excel VBA, argument θ3 and θ3 + 𝜋 of C3 
∗  are set as phase C 3 (1) and 

phase C 3 (2) as shown in Table A_ 1. Subsequently, we represent candidates of complex 

characteristic impedance ZSP
∗  for two arguments as follows:  

 ReZSPI(𝑘) + 𝑖 ∙ 𝐼𝑚𝑍𝑆𝑃𝐼(𝑘) , 𝑘 = 1,2,3,4, 𝑖 = √−1  
We searched for the solutions satisfying Eq. (A2_7) from among these. 

 

Table. A1. Procedure for obtaining a characteristic impedance satisfying the condition (A2_7) 
(Excel VBA)  

   AL2 = 2 * alphZ23I(jfreq) * Lsp: BL2 = 2 * betaZ23I(jfreq) * Lsp 

   eAL = Exp(AL2): snhAL = 0.5 * (eAL - 1 / eAL): cshAL = 0.5 * (eAL + 1 / eAL) 

   snBL = Sin(BL2): csBL = Cos(BL2) 

  'C1s C1
∗ 

   Ar = ReZ23A(jfreq) - ReZ3(jfreq): Ai = ImZ23A(jfreq) - ImZ3(jfreq) 

   Br = snhAL / (cshAL - csBL): Bi = -snBL / (cshAL - csBL) 

   Re_AB = Ar * Br - Ai * Bi: Im_AB = Ai * Br + Ar * Bi ' Complex A*B 

   ReCoef(1) = Re_AB: ImCoef(1) = Im_AB 

  'C2s  C2
∗ 

   Ar = ReZ23A(jfreq): Ai = ImZ23A(jfreq) 

   Br = ReZ3(jfreq): Bi = ImZ3(jfreq) 

   Re_AB = Ar * Br - Ai * Bi: Im_AB = Ai * Br + Ar * Bi ' Complex A*B 

   ReCoef(2) = Re_AB: ImCoef(2) = Im_AB 
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  'C3s=C1s^2+4*C2s  C3
∗ 

   Ar = ReCoef(1): Ai = ImCoef(1): Br = Ar: Bi = Ai 

   Re_AB = Ar * Br - Ai * Bi: Im_AB = Ai * Br + Ar * Bi ' Complex A*B 

   ReCoef(3) = Re_AB + 4 * ReCoef(2): ImCoef(3) = Im_AB + 4 * ImCoef(2) 

  ' abs(C3s) and Phase(C3s) 

   absC3 = Sqr(ReCoef(3) ^ 2 + ImCoef(3) ^ 2) 

  phaseC3(1) = Application.WorksheetFunction.Atan2(ReCoef(3), ImCoef(3)) 

   phaseC3(2) = phaseC3(1) + 2 * pi 

  'C4s & C5s=sqr(C3s) (Complex)  ‘(𝐶3
∗)1 2⁄    

   absC4 = Sqr(absC3)   

   ReCoef(4) = absC4 * Cos(phaseC3(1) / 2): ImCoef(4) = absC4 * Sin(phaseC3(1) / 2) 

   ReCoef(5) = absC4 * Cos(phaseC3(2) / 2): ImCoef(5) = absC4 * Sin(phaseC3(2) / 2) 

  'Candidates of Zsp 

   ReZspI(1) = 0.5 * (ReCoef(1) + ReCoef(4)): ImZspI(1) = 0.5 * (ImCoef(1) + ImCoef(4)) 

   ReZspI(2) = 0.5 * (ReCoef(1) + ReCoef(5)): ImZspI(2) = 0.5 * (ImCoef(1) + ImCoef(5)) 

   ReZspI(3) = 0.5 * (ReCoef(1) - ReCoef(4)): ImZspI(3) = 0.5 * (ImCoef(1) - ImCoef(4)) 

   ReZspI(4) = 0.5 * (ReCoef(1) - ReCoef(5)): ImZspI(4) = 0.5 * (ImCoef(1) - ImCoef(5)) 

  'Searching for ReZspI(k)>0 and ImZsp(k)>=0 

    iSol = 0: iPsol = 0 

   For i = 1 To 4 ‘Searching  

     ReZspIP(i) = 0: ImZspIP(i) = 0 'Initial value ReZsp<=0 or ImZsp<0 

    If ReZspI(i) > 0 And ImZspI(i) >= 0 Then  '* 

     iPsol = i: iSol = iSol + 1 ‘iPsol :Candidate Number. Satisfying (A2_7)    

     ReZspIP(iSol) = ReZspI(iPsol): ImZspIP(iSol) = ImZspI(iPsol)  ' Store variables that 

satisfy Re> 0, Im> = 0 in an array 
     ReZspNew = ReZspIP(iSol): ImZspNew = ImZspIP(iSol) ' Variables that satisfy Re> 0, Im> 

= 0  
   End If  ' * ReZspI(i) > 0 And ImZspI(i) >= 0 * 

  Next i   ‘Searching 

   nPsol = iSol  ‘nPsol : Number of nonnegative solutions 

 

According to the fundamental theorem of algebra, the quadratic equation of the complex 

coefficients has two solutions in the complex number. 

Let us assume that one complex number Zsp
∗   such that the real part is not positive or the 

imaginary part is negative is obtained. At this time, if Zsp
∗  that satisfies the condition (A2_7) is 

obtained, this is the only solution satisfying the condition (A2 _7). 

 

Once the characteristic impedance Zsp
∗   of the specimen is obtained, the complex wave 

number β∗ = 𝛽 − 𝑖𝛼 in the specimen can be obtained as follows.  
 

Real Wave Number and Attenuation Constant of Longitudinal Wave in the Specimen 

      

   
      *2**

**

*2**

ReReIm1

ReIm

,
ReReIm1

1

SPSPSP

SPSP

SPSPSP

ZZZ

ZZ

ZZZ














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          (A2_8)  

(See Eqs.(B3) and (B4) in Appendix B. Here, ZC
∗ = 𝑍𝑆𝑃

∗  . ) 

 

 (Iterative Calculation) 
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In the quadratic equation (A2_3) of complex coefficients, the coefficient C1
∗  is a function of the 

unknown quantities (the real wave number β and the attenuation constant α). Therefore, it is 

necessary to perform iterative calculation to simultaneously obtain Zsp
∗  , real wave number β, and 

attenuation constant α. 

We set Re(ZSP
∗ ) 𝑍0⁄  and Im(ZSP

∗ ) Re(ZSP
∗ )⁄  for the starting frequency as the initial value. For 

example, at 1600 Hz, Re(ZSP
∗ ) 𝑍0⁄   is approximately 300 to 500 and Im(ZSP

∗ ) Re(ZSP
∗ )⁄  is 

approximately 0.1.  

Subsequently, we updated the real part and the imaginary part of the characteristic impedance to 

Re(ZSP
𝑁𝑒𝑤∗)  and Im(ZSP

𝑁𝑒𝑤∗)  using equations (A2_4) to (A2_8). Subsequently, the following 

relaxation calculation was applied to these updated values: 

(∆L)𝑅𝑒𝑍𝑆𝑃 = ℓ𝑛(𝑅𝑒(𝑍𝑆𝑃
𝑁𝑒𝑤∗) + 𝜀) − ℓ𝑛(𝑅𝑒(𝑍𝑆𝑃

∗ ) + 𝜀),  

 (∆L)𝐼𝑚𝑍𝑆𝑃 = ℓ𝑛(𝐼𝑚(𝑍𝑆𝑃
𝑁𝑒𝑤∗) + 𝜀) − ℓ𝑛(𝐼𝑚(𝑍𝑆𝑃

∗ ) + 𝜀),  

 Re(ZSP
∗ ) ← Re(ZSP

∗ ) ∙ 𝑒𝑥𝑝(𝑅𝑒𝑙𝑎𝑥 ∙ (∆L)𝑅𝑒𝑍𝑆𝑃)  ,  

 Im(ZSP
∗ ) ← Im(ZSP

∗ ) ∙ 𝑒𝑥𝑝(𝑅𝑒𝑙𝑎𝑥 ∙ (∆L)𝐼𝑚𝑍𝑆𝑃)  ,           (A2_9a) 
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                                (A2_9b) 

 0 < 𝑅𝑒𝑙𝑎𝑥 < 1  Relaxation parameter, 0 < 𝜀 ≪ 1 Positive small number such as 10−10 

 

  The numerical calculation procedure in this section is summarized in Fig. A2.                                          

  

 

 
Fig. A2. Flow chart of the procedure in this section 
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（Note A1）Derivation of the second side of Eq.(A2 _3) 
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Multiply the numerator and denominator of the above equation by the following factor F, which is 

the conjugate complex number of the denominator.  
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Therefore, the following relation is obtained: 
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Appendix B. Relation between the Characteristic Impedance, Complex Wave Number, and 

Viscoelasticity 

 

We present the relation between the characteristic impedance, complex wave number, and 

viscoelasticity derived in the previous studies [3],[4]. 

 

[Relation between the Viscoelasticity and Complex Wave Number] 

(Direct) 
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Attenuation Constant (factor)         



Journal of Technology and Social Science (JTSS) 

20 

J. Tech. Soc. Sci., Vol.4, No.1, 2020 

 
   

2

1

2212

2

1

tan1

1

tan1

1

2 
































E
                              (B1b) 

 ↔ 

(Inverse) 
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[Relation between the Characteristic Impedance and Complex Wave Number] 

(Direct) 
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(Inverse) 
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Appendix C. Physical Properties and Dimensions  
The physical properties and dimensions used in this study are listed in Table C1. The data in this 

table are the values described in the paper of Policarpo et al. [1]. Here, the storage modulus and the 

loss factor are the results estimated via modal-based inverse analysis. The two frequencies 

correspond to the two natural frequencies obtained by changing the lengths of the steel rods at both 

ends. We used the value obtained via linear interpolation of the data listed in the table as a relation 

between viscoelasticity and frequency. 
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Table C1. Properties and size of the specimen (Specimen A) 

      
(*1) Varied in the range 0 ≤ 𝜈𝑆𝑡𝑒𝑒𝑙 < 0.5 

(*2) and (*3): Policarpo's data (for their cork VC6400) 

(*3): Policarpo’s modal inversion results 
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